全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

井约束非稳态相位校正方法

DOI: 10.6038/cjg20140127, PP. 310-319

Keywords: 相位校正,局部相似度,非稳态,井约束,平面波预测算子

Full-Text   Cite this paper   Add to My Lib

Abstract:

在地震勘探资料处理中,子波的零相位化有助于提高地震资料的分辨率、改善叠加剖面的质量.常规的相位校正方法是利用测井合成记录对井旁地震记录进行相位估计,然后对整条剖面进行常相位校正,该方法没有考虑地震子波相位的非稳态性(相位随时间和空间变化).虽然通过局部相似度方法利用最大方差模准则或包络最大相似度准则可以估计出随时间和空间变化的相位属性,但是由于零相位判别准则本身具有一定的局限性,因此精度有限.针对这一问题,本文在局部地震属性和局部平面波模型下,提出了一种井约束的非稳态相位校正方法,该方法不仅考虑了子波相位的非稳态性,而且充分利用了测井合成地震记录进行相位校正精度高的优点.理论模型和实际资料处理表明,本文方法可以有效实现信号的零相位化,有利于改善叠加效果,提高资料的分辨率.

References

[1]  Wiggins R. 1985. Entropy guided deconvolution. Geophysics, 50(12): 2720-2726.
[2]  Zhou X Y. 1989. Constant phase correction. Oil Geophysical Prospecting (in Chinese), 24(2): 119-129.
[3]  Claerbout J F. 1992. Earth Soundings Analysis: Processing Versus Inversion. Blackwell Scientific Publications.
[4]  Chen B Y, Chen M W, Yi W Q. 1997. Time and space and subsection frequency phase correction. Oil Geophysical Prospecting (in Chinese), 32(1): 103-108.
[5]  Fomel S. 2002. Applications of plane-wave destruction filters. Geophysics, 67(6): 1946-1960.
[6]  Fomel S. 2007. Shaping regularization in geophysical-estimation problems. Geophysics, 72(2): R29-R36.
[7]  Fomel S. 2007. Local seismic attributes. Geophysics, 72(3): A29-A33.
[8]  Fomel S. 2010. Local similarity with the envelope as a seismic phase detector.//80th Annual International Meeting: SEG, 1555-1559.
[9]  Fomel S, Guitton A. 2006. Regularizing seismic inverse problems by model reparameterization using plane-wave construction. Geophysics, 71(5): A43-A47.
[10]  Gao S W, Zhou G Y, Cai J M. 2001. Surface consistant phase correction for reflection wave. Oil Geophysical Prospecting (in Chinese), 36(4): 480-487.
[11]  Guo J Y, Zhou X Y. 1995. Surface consistent phase correction in 2D and 3D domains. Oil Geophysical Prospecting (in Chinese), 30(3): 345-350.
[12]  Levy S, Oldenburg D W. 1987. Automatic phase correction of common-midpoint stacked data. Geophysics, 52(1): 51-59.
[13]  Li F L, Wang C S, Xu B X, et al. 1990. Lp norm deconvolution and its application in seismic exploration. Chinese J. Geophys. (in Chinese), 33(5): 585-592.
[14]  Li H Q, Zhou X Y. 2000. Moveout and constant phase correction along with weighed stacking. Oil Geophysical Prospecting (in Chinese), 35(4): 415-418.
[15]  Li Z C, Wang X P, Han W G. 2008. Review of phase correction in seismic data processing. Progress in Geophysics (in Chinese), 23(3): 768-774.
[16]  Liu Y J, Li Z C, Guo K. 2012.Non-stationary phase correction based on local similarity. Oil Geophysical Prospecting (in Chinese), 47(6): 887-893.
[17]  Longbottom J, Walden A T, White R E. 1988. Principles and application of maximum kurtosis phase estimation. Geophysical Prospecting, 36(2): 115-138.
[18]  Shan L Y. 2008. Improvement of discriminant criteria for phase correction and its application effect. Geophysical Prospecting for Petroleum (in Chinese), 47(3): 219-224.
[19]  Song Z P, Li J J, Zhang L P. 2004. Prestack constant phase correction. Petroleum Geology & Oilfield Development in Daqing (in Chinese), 23(2): 69-70.
[20]  Van der Baan M. 2008. Time-varying wavelet estimation and deconvolution by kurtosis maximization. Geophysics, 73(2): V11-V18.
[21]  Van der Baan M, Fomel S. 2009. Nonstationary phase estimation using regularized local kurtosis maximization. Geophysics, 74(6): A75-A80.
[22]  Van der Baan M, Perz M, Fomel S. 2010. Nonstationary phase estimation for analysis of wavelet character.//72nd Conference and Exhibition, EAGE.
[23]  White R E. 1988. Maximum kurtosis phase correction. Geophysical Journal International, 95(2): 371-389.
[24]  Wiggins R. 1978. Minimum entropy deconvolution. Geoexploration, 16(1-2): 21-35.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133