全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用扩散电场法估算CHTEM-I系统的探测深度

DOI: 10.6038/cjg20140126, PP. 303-309

Keywords: 直升机,时间域航空电磁,探测深度,噪声水平,扩散电场深度,CHTEM-I系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

时间域航空电磁系统的探测深度是一项关键技术参数,在系统研制设计和资料解释中都有重要作用.当目标层与围岩电性差异不大或目标层引起的异常响应不明显时,常规的估算探测深度方法不再适用,为克服这种缺陷,本文提出了一种系统探测深度的估算方法,该方法通过模拟电场在均匀半空间模型和层状模型中的扩散过程,记录电场最大幅值在地下的瞬时位置,将系统的探测深度定义为观测到的响应值等于给定的噪声水平时,对应时刻的地下介质中感应电场幅度的最大值对应的深度.论文以我国自主研制的直升机时间域航空电磁系统CHTEM-I为例,根据对不同条件下的计算结果的分析,给出了探测深度与模型电导率、飞行高度和噪声水平之间的关系曲线,并总结出一些能够提高系统探测深度的建议.结果表明半空间模型电导率在0.000295~0.0422S/m范围内,CHTEM-I系统可以在噪声水平与t-0.5成正比条件下达到300m的探测深度.本文方法的估算结果不受模型层厚薄,或目标层与围岩电性差异小等因素影响,因而具有较高的实用性.文中的结论对时间域航空电磁系统设计有理论指导意义,也可用于其它时间域电磁勘探系统探测深度的估算.

References

[1]  Auken E, Christiansen A V, Westergaard J H, et al. 2009. An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system. Exploration Geophysics, 40(2): 184-192.
[2]  Beamish D. 2004. Airborne EM skin depths. Geophysical Prospecting, 52(5): 439-449.
[3]  Christiansen A V, Auken E. 2012. A global measure for depth of investigation. Geophysics, 77(4): WB171-WB177.
[4]  Effers? F, Auken E, Srensen K I. 1999. Inversion of band-limited TEM responses. Geophysical Prospecting, 47(4): 551-564.
[5]  Guptasarma D, Singh B. 1997. New digital linear filters for Hankel J0 and J1 transforms. Geophysical Prospecting, 45(5): 745-762.
[6]  Huang H P. 2005. Depth of investigation for small broadband electromagnetic sensors. Geophysics, 70(6): G135-G142.
[7]  Ji Y J, Lin J, Guan S S, et al. 2010. Theoretical study of concentric loop coils attitude correction in helicopter-borne TEM. Chinese J. Geophys. (in Chinese), 53(1): 171-176, doi:10.3969/j.issn.0001-5733.2010.01.019.
[8]  Li Y X, Qiang J K, Tang J T. 2010. A research on 1D forward and inverse airborne transient electromagnetic method. Chinese J. Geophys. (in Chinese), 53(3): 751-759 doi: 10. 3969/j. issn. 0001-5733. 2010. 03. 031.
[9]  Luo Y Z, Zhang S Y, Wang W P. 2003. A research on one-dimension forward for aerial electromagnetic method in time domain. Chinese J. Geophys. (in Chinese), 46(5): 719-724.
[10]  Mao L F, Wang X B, Chen B. 2011a. Study on an adaptive regularized 1D inversion method of helicopter TEM data. Progress in Geophys. (in Chinese), 26(1): 300-305, doi: 10. 3969/j. issn. 1004-2903. 2011. 01. 035.
[11]  Mao L F, Wang X B, Li W J. 2011b. Research on 1D inversion method of fix-wing airborne transient electromagnetic record with flight altitude inversion simultaneously. Chinese J. Geophys. (in Chinese), 54(8): 2136-2147, doi: 10. 3969/j. issn. 0001-5733. 2011. 08. 021.
[12]  Nabighian M N. 1979. Quasi-static transient response of a conducting half-space—An approximate representation. Geophysics, 44(10): 1700-1705.
[13]  Peltoniemi M. 1998. Depth of penetration of frequency-domain airborne electromagnetics in resistive terrains. Exploration Geophysics, 29(2): 12-15.
[14]  Singh N P, Mogi T. 2003. EMLCLLER-A program for computing the EM response of a large loop source over a layered earth model. Computer and Geosciences, 29(10): 1301-1307.
[15]  Singh N P, Mogi T. 2005. Electromagnetic response of a large circular loop source on a layered earth—A new computation method. Pure and Applied Geophysics, 162(1): 181-200.
[16]  Spies B R. 1989. Depth of investigation in electromagnetic sounding methods. Geophysics, 54(7): 872-888.
[17]  Ward S H, Hohmann G W. 1988. Electromagnetic theory for geophysical applications // Nabighian MN ed. Electromagnetic Methods in Applied Geophysics, Vol.1 Theory. Tulsa: Society of Exploration Geophysicists.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133