全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

与东北冷涡相伴的高空急流诱发平流层重力波的数值模拟研究

DOI: 10.6038/cjg20140102, PP. 10-20

Keywords: 平流层重力波,高空急流,地转适应,东北冷涡

Full-Text   Cite this paper   Add to My Lib

Abstract:

使用中尺度数值模式WRF-ARW,针对2010年6月发生在中国东北地区一例伴随对流层高空西风急流(位于~9km高度)演变过程出现的平流层重力波活动特征开展了数值模拟.事件发生期间,对流层区域环流处在一个东北冷涡系统的控制之下.模拟结果再现了该东北冷涡的发展和维持过程,以及与之相伴的高空急流的特征.模拟结果揭示出在急流区域上空的平流层中存在显著重力波活动现象.分析结果显示,重力波活动与急流存在紧密联系,在水平方向上,重力波呈显著的二维结构,出现在急流出口区上部并逆背景流向西传播.功率谱分析结果表明盛行波动具有~700km水平尺度、9~12h时间尺度以及4~5km垂直波长.由于急流的存在,造成其与平流层中下部之间存在显著的水平风速垂直切变,与切变相伴的耗散使得上传的重力波动量通量数值随着高度升高而递减.同时,在18~20km高度间出现的西风-东风转换带极大地抑制了波动在垂直方向的传播,形成显著动量通量沉积效应.估算结果表明,在11~20km高度之间,这种效应的整体作用相当于对该层背景流施加强度为0.86m·s-1·day-1的动力阻曳.

References

[1]  Beres J H, Alexander M J, Holton J R. 2002. Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves. Journal of the Atmospheric Sciences, 59(11): 1805-1824.
[2]  Chen D, Chen Z Y, Lü D R. 2012. Simulation of the stratospheric gravity waves generated by the Typhoon Matsa in 2005. Science China: Earth Sciences, 55(4): 602-610.
[3]  Chen D, Chen Z Y, Lü D R. 2013. Spatio-temporal spectrum and momentum flux of the stratospheric gravity waves generated by a typhoon. Science China: Earth Sciences, 56(1): 54-62.
[4]  Ding X, Zhang S D, Yi F. 2011. A numerical simulation on gravity waves generated by thermal source and their influences on mean flow. Chinese Journal of Geophysics (in Chinese), 54(7): 1701-1710.
[5]  Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46(20): 3077-3107.
[6]  Fritts D C, Alexander M J. 2003. Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41(1), doi: 10.1029/2001RG000106.
[7]  Fritts D C, Luo Z. 1992. Gravity wave excitation by geostrophic adjustment of the jet stream. Part I: two-dimensional forcing. Journal of Atmospheric Sciences, 49(8): 681-697.
[8]  Thomas L, Worthington R M, McDonald A J. 1999. Inertia-gravity waves in the troposphere and lower stratosphere associated with a jet stream exit region. Annales Geophysicae, 17(1): 115-121.
[9]  Zhang C, Zhang Q, Wang Y, et al. 2008. Climatology of warm season cold vortices in East Asia: 1979-2005. Meteorology and Atmospheric Physics, 100(1-4): 291-301.
[10]  Zhang F. 2004. Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. Journal of the Atmospheric Sciences, 61(4): 440-457.
[11]  Zhang L X, Li Z C. 2009. A summary of research on cold vortex over Northeast China. Climatic and Environmental Research (in Chinese), 14(2): 218-228.
[12]  Zhang S D, Huang C M, Yi F. 2006. Radiosonde observations of vertical wavenumber spectra for gravity waves in the lower atmosphere over central China. Annales Geophysicae, 24(12): 3257-3265.
[13]  Zhang S D, Yi F, Huang C M, et al. Intensive radiosonde observations of gravity waves in the lower atmosphere over Yichang (111°18''E, 30°42''N), China. Annales Geophysicae, 2008, 26(7): 2005-2018.
[14]  Zhang S D, Yi F. 2007. Latitudinal and seasonal variations of inertial gravity wave activity in the lower atmosphere over central China. Journal of Geophysical Research, 112(D5), doi:10.1029/2006JD007487.
[15]  Zhao S X, Sun J H. 2007. Study on cut-off low-pressure systems with floods over Northeast Asia. Meteorology and Atmospheric Physics, 96(1-2): 159-180.
[16]  Zheng X Y, Zhang T Z. 1992. Rainstorm in Northeast China (in Chinese). Beijing: China Meteorological Press.
[17]  Fritts D C, Nastrom G D. 1992. Sources of mesoscale variability of gravity waves. Part Ⅱ: frontal, convective and jet stream excitation. Journal of Atmospheric Sciences, 49(2): 111-127.
[18]  Guest F M, Reeder M J, Marks C J, et al. 2000. Inertia-gravity waves observed in the lower stratosphere over Macquarie Island. Journal of Atmospheric Sciences, 57(5): 737-752.
[19]  Holton J R, Haynes P H, McIntyre M E, et al. 1995. Stratosphere-troposphere exchange. Reviews of Geophysics, 33(4): 403-439.
[20]  Holton J R. 1982. The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. Journal of the Atmospheric Sciences, 39(4): 791-799.
[21]  Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9): 2318-2341.
[22]  Kain J S, Fritsch J M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization. Journal of the Atmospheric Sciences, 47(23): 2784-2802.
[23]  Li W, Yi F. 2007. Characteristics of inertia-gravity waves around jet stream from radiosonde observations in Wuhan (30.5 degrees N, 114.4 degrees E). Journal of Atmospheric and Solar-Terrestrial Physics, 69(7): 826-834.
[24]  Li W, Yi F. 2011. Research on correlation between gravity waves energy and jet. Chinese Journal of Space Science (in Chinese), 31(3): 311-317.
[25]  Lin Y L, Farley R D, Orville H D. 1983. Bulk parameterization of the snow field in a cloud model. Journal of Climate and Applied Meteorology, 22(6): 1065-1092.
[26]  Luo Z, Fritts D C. 1993. Gravity wave excitation by geostrophic adjustment of the jet stream. Part II: three-dimensional forcing. Journal of the Atmospheric Sciences, 50(1): 104-115.
[27]  Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. Journal of Geophysical Research, 102(D14): 16663-16682.
[28]  O''sullivan D, Dunkerton T J. 1995. Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. Journal of the Atmospheric Sciences, 52(1): 3695-3716.
[29]  Plougonven R, Snyder C. 2005. Gravity waves excited by jets: propagation versus generation. Geophysical Research Letters, 32(18), doi: 10.1029/2005GL023730.
[30]  Plougonven R, Snyder C. 2007. Inertia-gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. Journal of the Atmospheric Sciences, 64(7): 2502-2520.
[31]  Plougonven R, Teitelbaum H. 2003. Comparison of a large-scale inertia-gravity wave as seen in the ECMWF analyses and from radiosondes. Geophysical Research Letters, 30(18), doi: 10.1029/2003GL017716.
[32]  Plougonven R, Zhang F. 2007. On the forcing of inertia-gravity waves by synoptic-scale flows. Journal of the Atmospheric Sciences, 64(5): 1737-1742.
[33]  Press W H, Teukolsky S A, Vetterling W T, et al. 1992. Numerical Recipes in Fortran 77: the Art of Scientific Computing. New York: Cambridge University Press.
[34]  Sato K. 1994. A statistical study of the structure, saturation and sources of inertio-gravity waves in the lower stratosphere observed with the MU radar. Journal of Atmospheric and Solar-Terrestrial Physics, 56(6): 755-774.
[35]  Thomas L, Prichard I T, Astin I. 1992. Radar observations of an inertia-gravity wave in the troposphere and lower stratosphere. Annales Geophysicae, 10(9): 690-697.
[36]  Weare B C, Nasstrom J S. 1982. Examples of extended empirical orthogonal function analyses. Monthly Weather Review, 110(6): 481-485.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133