全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于残余星间速度法精确和快速反演下一代GRACEFollow-On地球重力场

DOI: 10.6038/cjg20140104, PP. 31-41

Keywords: GRACEFollow-On卫星,残余星间速度法,激光干涉测距仪,下一代卫星重力反演,累计大地水准面精度

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于新型残余星间速度法(RIRM)反演了120阶GRACEFollow-On地球重力场.第一,由于GPS定轨精度相对较低,通过将激光干涉测距仪的高精度残余星间速度(测量精度10-7m·s-1)引入残余轨道速度差分矢量的视线分量构建了新型RIRM观测方程.第二,基于2点、4点、6点和8点RIRM公式对比论证了最优的插值点数.如果相关系数和采样间隔一定,随着插值点数的增加,卫星观测值的信号量被有效加强,而卫星观测值的误差量也同时增加.因此,6点RIRM公式是提高下一代地球重力场精度的较优选择.第三,相关系数对地球重力场精度的影响在不同频段表现为不同特性.随着相关系数的逐渐增大,地球长波重力场精度逐渐降低,而地球中长波重力场精度逐渐升高.第四,基于6点RIRM公式,通过30天观测数据和采样间隔5s,分别利用星间速度和残余星间速度观测值,在120阶次处反演下一代GRACEFollow-On累计大地水准面精度为1.638×10-3m和1.396×10-3m.研究结果表明:(1)残余星间速度观测量较星间速度对地球重力场反演精度更敏感;(2)GRACEFollow-On地球重力场精度较GRACE至少高10倍.

References

[1]  Bender P L, Wiese D N, Nerem R S. 2008. A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits. In: Proceedings of the third international symposium on formation flying, missions and technologies. ESA/ESTEC, Noordwijk, 1-6.
[2]  Engeln-Mullges G, Reutter F. 1988. Numerik-Algorithmen mit ANSI C-Programmen, BI-Wiss, Verlag, Mannheim.
[3]  Sneeuw N, Flury J, Rummel R. 2005. Science requirements on future missions and simulated mission scenarios. Earth, Moon, and Planets, 94(1-2): 113-142.
[4]  Tapley B, Ries J, Bettadpur S, et al. 2005. GGM02-An improved Earth gravity field model from GRACE. Journal of Geodesy, 79(8): 467-478.
[5]  Wiese D N, Folkner W M, Nerem R S. 2009. Alternative mission architectures for a gravity recovery satellite Mission. Journal of Geodesy, 83(6): 569-581.
[6]  Wiese D N, Nerem R S, Lemoine F G. 2012. Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites. Journal of Geodesy, 86(2): 81-98.
[7]  Wolff M. 1969. Direct measurement of the Earth''s gravitational potential using a satellite pair. Journal of Geophysical Research, 74(22): 5295-5300.
[8]  Zheng W, Shao C G, Luo J, et al. 2008. Improving the accuracy of GRACE Earth''s gravitational field using the combination of different inclinations. Progress in Natural Science, 18(5): 555-561.
[9]  Zheng W, Xu H Z, Zhong M, et al. 2009. Physical explanation of influence of twin and three satellites formation mode on the accuracy of Earth''s gravitational field. Chinese Physics Letters, 26(2): 029101-1-029101-4.
[10]  Zheng W, Xu H Z, Zhong M, et al. 2011. Efficient calibration of the non-conservative force data from the space-borne accelerometers of the twin GRACE satellites. Transactions of the Japan Society for Aeronautical and Space Sciences, 54(184): 106-110.
[11]  Zheng W, Xu H Z, Zhong M, et al. 2012a. Efficient accuracy improvement of GRACE global gravitational field recovery using a new inter-satellite range interpolation method. Journal of Geodynamics, 53: 1-7.
[12]  F?rste C, Flechtner F, Schmidt R, et al. 2005. A new high resolution global gravity field model derived from combination of GRACE and CHAMP mission and altimetry/gravimetry surface gravity data. Presented at EGU General Assembly 2005, Vienna, Austria, 24-29, April.
[13]  F?erste C, Schmidt R, Stubenvoll R, et al. 2008a. The Geo Forschungs Zentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. Journal of Geodesy, 82(6): 331-346.
[14]  F?erste C, Flechtner F, Schmidt R, et al. 2008b. EIGEN-GL05C-A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. General Assembly European Geosciences Union. Geophysical Research Abstracts, Vol. 10, Abstract No. EGU2008-A-06944.
[15]  Loomis B D, Nerem R S, Luthcke S B. 2012. Simulation study of a follow-on gravity mission to GRACE. Journal of Geodesy, 86(5): 319-335.
[16]  Reigber C. 2004. First GFZ GRACE gravity field model EIGEN-GRACE01S. http://op.gfzpotsdam.de/grace/results.
[17]  Reigber C, Schmidt R, Flechtner F. 2004a. An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. Journal of Geodynamics, 39(1): 1-10.
[18]  Reigber C, Schwintzer P, Stubenvoll R, et al. 2004b. A high-resolution global gravity field model combining CHAMP and GRACE satellite mission and surface gravity data: EIGEN-CG01C. Joint CHAMP/GRACE Science Meeting, GFZ, July 5-7.
[19]  Reigber C, Schmidt R, Flechtner F. 2005. An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. Journal of Geodynamics, 39(1): 1-10.
[20]  Rummel R. 2003. How to climb the gravity wall. Space Science Reviews, 108(1): 1-14.
[21]  Zheng W, Xu H Z, Zhong M, et al. 2012b. Precise recovery of the Earth''s gravitational field with GRACE: Intersatellite Range-Rate Interpolation Approach. IEEE Geoscience and Remote Sensing Letters, 9(3): 422-426.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133