全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青藏高原东北缘合作—大井剖面地壳电性结构研究

DOI: 10.6038/j.issn.0001-5733.2012.12.010, PP. 3979-3990

Keywords: 青藏高原东北缘,大地电磁测深,电性结构,海原断裂,高导层

Full-Text   Cite this paper   Add to My Lib

Abstract:

青藏高原东北缘合作—大井剖面的大地电磁探测结果表明,该区域的电性结构呈明显的纵向分层、横向分块的特点,中下地壳普遍存在高导层.青藏高原东北缘西秦岭北缘断裂带、北祁连南缘断裂带、北祁连北缘断裂带(海原断裂带)及龙首山南缘断裂带等区域性断裂带在电性结构模型中均表现为电性梯度带或低阻异常带.电性结构的横向分区与构造上的地块划分有明显的一致性,各个地块的电性结构存在明显差异.西秦岭北缘断裂带作是一个大型的板块边界,但板块结合带附近没有明显逆冲或俯冲痕迹,可能主要以左旋走滑为主.北祁连地块向北仰冲与阿拉善地块向南俯冲边界可能不是海原断裂带,而是龙首山南缘断裂带.西秦岭造山带内的壳内高导层与青藏高原内部存在的高导层具有可对比性,可能是由于部分熔融与含盐水流体共同作用的结果.中祁连地块内的高导层可能是含盐水流体引起的.而北祁连与河西走廊过渡带内的高导层则可能是板块俯冲或仰冲的构造运动痕迹,也可能是由含盐水流体引起的.

References

[1]  肖序常, 李廷栋, 袁学诚等. 喜马拉雅岩石圈构造演化总论. 北京: 地质出版社, 1988: 151-152. Xiao X C, Li T D, Yuan X C, et al. Tectonic Evolution of the Crust-Upper Mantle of the Qinghai-Xizang (Tibet) Plateau General Review (in Chinese). Beijing: Geological Publishing House, 1988: 151-152.
[2]  Wei W B, Unsworth M J, Jones A G, et al. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science, 2001, 292(5517): 716-719.
[3]  金胜, 叶高峰, 魏文博等. 青藏高原西缘壳幔电性结构与断裂构造: 札达~泉水湖剖面大地电磁探测提供的依据. 地球科学-中国地质大学学报, 2007, 32(4): 474-480. Jin S, Ye G F, Wei W B. The electrical structure and fault feature of crust and mantle of western Tibet Plateau: based on results of magnetotelluric survey along profile Zhada-Quanshuihu. Earth Science-Journal of China University of Geosciences (in Chinese), 2007, 32(4): 474-480.
[4]  赵国泽, 汤吉, 詹艳等. 青藏高原东北缘地壳电性结构和地块变形关系的研究. 中国科学(D 辑), 2004, 34(10): 908-918. Zhao G Z, Tang J, Zhan Y, et al. Relation between electricity structure of the crust and deformation of crustal blocks on the Northeastern margin of Qinghai-Tibet Plateau. Sci. China D (in Chinese), 2004, 34(10): 908-918.
[5]  Liu M J, Mooney W D, Li S L, et al. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. Tectonophysics, 2006, 420(1-2): 253-266.
[6]  詹艳, 赵国泽, 陈小斌等. 宁夏海原大震区西安州—韦州剖面大地电磁探测与研究. 地球物理学报, 2004, 47(2): 274-281. Zhan Y, Zhao G Z, Chen X B, et al. Crustal structure from magnetotelluric profiling in the Haiyuan Earthquake area, Ningxia Hui autonomous region, China. Chinese J. Geophys. (in Chinese), 2004, 47(2): 274-282.
[7]  詹艳, 赵国泽, 王继军等. 1927年古浪8级大震区及其周边地块的深部电性结构. 地球物理学报, 2008, 51(2): 511-520. Zhan Y, Zhao G Z, Wang J J, et al. Deep electric structure beneath the epicentre of the 1927 Gulang M8 earthquake and its adjacent areas from magnetotelluric sounding. Chinese J. Geophys. (in Chinese), 2008, 51(2): 511-520.
[8]  赵国泽, 陈小斌, 王立凤等. 青藏高原东边缘地壳"管流"层的电磁探测证据. 科学通报, 2008, 53(3): 345-350. Zhao G Z, Chen X B, Wang L F, et al. Evidence of crustal ''channel flow'' in the eastern margin of Tibetan Plateau from MT measurements. Chinese Science Bulletin, 2008, 53(12): 1887-1893.
[9]  万战生, 赵国泽, 汤吉等. 青藏高原东边缘冕宁—宜宾剖面电性结构及其构造意义. 地球物理学报, 2010, 53(3): 585-594. Wan Z S, Zhao G Z, Tang J, et al. The electrical structure of the crust along Mianning-Yibin profile in the eastern edge of Tibetan plateau and its tectonic implications. Chinese J. Geophys. (in Chinese), 2010, 53(3): 585-594.
[10]  Bai D H, Unsworth M J, Meju M A, et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 2010, 3(5): 358-362.
[11]  董治平, 雷芳, 申秀荣等. 西秦岭北缘断裂带的深部构造特征及其与地震活动的关系. 内陆地震, 1996, 10(3): 224-234. Dong Z P, Lei F, Shen X R, et al. The deep structure features of the fault zone along northern edge of west Qinling and its relation with seismic activity. Inland Earthquake (in Chinese), 1996, 10(3): 224-234.
[12]  金胜, 张乐天, 魏文博等. 中国大陆深探测的大地电磁测深研究. 地质学报, 2010, 84(6): 808-817. Jin S, Zhang L T, Wei W B, et al. Magnetotelluric method for deep detection of Chinese continent. Acta Geologica Sinica (in Chinese), 2010, 84(6): 808-817.
[13]  Styron R, Taylor M, Okoronkwo K. Database of active structures from the Indo-Asian collision. Eos Trans. AGU, 2010, 91(20): 181-182.
[14]  Egbert G D, Booker J R. Robust estimation of geomagnetic transfer functions. Geophysical Journal of the Royal Astronomical Society, 1986, 87(1): 173-194.
[15]  Gamble T D, Goubau W M, Clarke J. Magnetotellurics with a remote magnetic reference. Geophysics, 1979, 44(1): 53-68.
[16]  Groom R W, Bailey R C. Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion. Journal of Geophysical Research-Solid Earth and Planets, 1989, 94(B2): 1913-1925.
[17]  McNeice G W, Jones A G. Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics, 2001, 66(1): 158-173.
[18]  Bahr K. Geological noise in magnetotelluric data: a classification of distortion types. Physics of the Earth and Planetary Interiors, 1991, 66(1-2): 24-38.
[19]  Swift C M. A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States . Cambridge: Massachusetts Institute of Technology, 1967.
[20]  Rodi W, Mackie R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 2001, 66(1): 174-187.
[21]  冯益民, 曹宣铎, 张二朋等. 西秦岭造山带的演化、构造格局和性质. 西北地质, 2003, 36(1): 1-10. Feng Y M, Cao X D, Zhang E P, et al. Tectonic evolution framework and nature of the West Qinling Orogenic Belt. Northwestern Geology (in Chinese), 2003, 36(1): 1-10.
[22]  郭进京, 韩文峰, 李雪峰. 西秦岭新生代以来地质构造过程对青藏高原隆升和变形的约束. 地学前缘, 2009, 16(6): 215-225. Guo J J, Han W F, Li X F. The Cenozoic tectonic evolution of the west Qinling: Constraints on the uplift and deformation of the Tibetan Plateau. Earth Science Frontiers (in Chinese), 2009, 16(6): 215-225.
[23]  秦国卿, 陈九辉, 刘大建等. 昆仑山脉和喀喇昆仑山脉地区的地壳上地幔电性结构特征. 地球物理学报, 1994, 37(2): 193-199. Qin G Q, Chen J H, Liu D J, et al. The characteristics of the electrical structure of the crust and upper mantle in the region of the Kunlun and the Karakorum Mountains. Chinese J. Geophys. (in Chinese), 1994, 37(2): 193-199.
[24]  马晓冰, 孔祥儒. 青藏高原岩石圈热状态及其东西部差异. 地球物理学进展, 2001, 16(3): 12-20. Ma X B, Kong X R. The thermal status of Qinghai-Tibet Platean and the differences between the western and the eastern platean. Progress in Geophysics (in Chinese), 2001, 16(3): 12-20.
[25]  吴功建, 高锐, 余钦范等. 青藏高原"亚东-格尔木"地学断面综合地球物理调查与研究. 地球物理学报, 1991, 34(5): 552-562. Wu G J, Gao R, Yu Q F, et al. Integrated investigations of the Qinghai-Tibet Plateau along the Yadong-Golmud geoscience transect. Chinese J. Geophys. (in Chinese), 1991, 34(5): 552-562.
[26]  高锐, 成湘洲, 丁谦. 格尔木─额济纳旗地学断面地球动力学模型初探. 地球物理学报, 1995, 38(S2): 3-14. Gao R, Cheng X Z, Ding Q. Preliminary geodynamic model of Golmud Piin Qi Geoscience transect─Ejin Qi geoscience transect. Chinese J. Geophys. (in Chinese), 1995, 38(S2): 3-14.
[27]  崔作洲, 李秋生, 吴朝东等. 格尔木─额济纳旗地学断面的地壳结构与深部构造. 地球物理学报, 1995, 38(S2): 15-28. Cui Z Z, Li Q S, Wu C D, et al. The crustal and deep structures in Golmud-Ejin Qi GGT. Chinese J. Geophys. (in Chinese), 1995, 38(S2): 15-28.
[28]  Chen L, Booker J R, Jones A G, et al. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying. Science, 1996, 274(5293): 1694-1696.
[29]  Nelson K D, Zhao W J, Brown L D, et al. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science, 1996, 274(5293): 1684-1688.
[30]  Unsworth M J, Jones A G, Wei W, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature, 2005, 438(7064): 78-81.
[31]  唐元, 李百祥. 祁连造山带地球物理场特征和区域控矿. 甘肃地质, 2008, 17(3): 36-43. Tang Y, Li B X. Geophysical field characteristics of Qilianshan Orogenic belt and regional metallogeny. Gansu Geology (in Chinese), 2008, 17(3): 36-43.
[32]  张振法, 李超英, 牛颖智. 阿拉善——敦煌陆块的性质、范围及其构造作用和意义. 内蒙古地质, 1997, (2): 6-8. Zhang Z F, Li C Y, Niu Y Z. Role, significance, characteristics and range of Alashan-Dunhuang land block. Geology of Inner Mongolia (in Chinese), 1997, (2): 6-8.
[33]  Dong S W, Li T D, Gao R, et al. A multidisciplinary Earth science research program in China. Eos Trans. AGU, 2011, 92(38): 313-314.
[34]  董树文, 李廷栋. SinoProbe——中国深部探测实验. 地质学报, 2009, 83(7): 895-909. Dong S W, Li T D. SinoProbe: the exploration of the deep interior beneath the Chinese continent. Acta Geologica Sinica (in Chinese), 2009, 83(7): 895-909.
[35]  高锐, 王海燕, 马永生等. 松潘地块若尔盖盆地与西秦岭造山带岩石圈尺度的构造关系——深地震反射剖面探测成果. 地球学报, 2006, 27(5): 411-418. Gao R, Wang H Y, Ma Y S, et al. Tectonic relationships between the Zoigê Basin of the Song-Pan Block and the West Qinling Orogen at lithosphere scale: results of deep seismic reflection profiling. Acta Geoscientia Sinica (in Chinese), 2006, 27(5): 411-418.
[36]  张培震, 郑德文, 尹功明等. 有关青藏高原东北缘晚新生代扩展与隆升的讨论. 第四纪研究, 2006, 26(1): 5-13. Zhang P Z, Zheng D W, Yin G M, et al. Discussion on Late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau. Quaternary Sciences (in Chinese), 2006, 26(1): 5-13.
[37]  吴功建. 格尔木—额济纳旗地学断面综合研究. 地质学报, 1998, 72(4): 289-300. Wu G J. Intergrated study of the Golmud-Ejin Geoscience transect. Acta Geologica Sinica (in Chinese), 1998, 72(4): 289-300.
[38]  赵志丹, 高山, 骆庭川等. 秦岭和华北地区地壳低速层的成因探讨——岩石高温高压波速实验证据. 地球物理学报, 1996, 39(5): 642-652. Zhao Z D, Gao S, Luo T C, et al. Origin of the crustal low velocity layer of Qinling and North China evidence from laboratory measurement of P-Wave velocity in rocks at high PT conditions. Chinese J. Geophys. (in Chinese), 1996, 39(5): 642-652.
[39]  施锦, 刘耀炜. 西秦岭北缘深浅部流体通道特征. 地震, 2002, 22(4): 35-40. Shi J, Liu Y W. The main characteristics of deep and superficial fluid pathway at northern edge of west Qinling. Earthquake (in Chinese), 2002, 22(4): 35-40.
[40]  涂毅敏, 李清河, 成瑾. 南北地震带北段速度结构与电阻率特性. 西北地震学报, 2000, 22(4): 353-360. Tu Y M, Li Q H, Cheng J. Seismic velocity structure and electric resistivity on north segment of the North-South seismic zone. Northwestern Seismological Journal (in Chinese), 2000, 22(4): 353-360.
[41]  李清河, 张元生, 涂毅敏等. 祁连山—河西走廊地壳速度结构及速度与电性的联合解释. 地球物理学报, 1998, 41(2): 197-210. Li Q H, Zhang Y S, Tu Y M, et al. The combined interpretation of crustal velocity and electrical resistivity in Qilianshan Mountain-Hexi corridor region. Chinese J. Geophys. (in Chinese), 1998, 41(2): 197-210.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133