全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大地电磁三维交错网格有限差分数值模拟的并行计算研究

DOI: 10.6038/j.issn.0001-5733.2012.12.015, PP. 4036-4043

Keywords: 大地电磁,三维正演数值模拟,交错采样有限差分,并行算法,MPI

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了更有效的提高大地电磁三维正演的计算速度,引入了并行处理技术.大地电磁三维交错网格有限差分数值模拟是按照不同频率来计算的,各频率之间求取电磁场值的过程是相互独立的.根据这一特点,可以将多个频率的计算任务平均划分为一个或者几个频率的计算子任务,分配到各个计算节点去并行执行,计算完成后将结果汇总.本文通过采用主从并行模式、分频并行计算的方案,在曙光TC5000A高性能并行平台上实现了基于MPI的大地电磁三维正演的并行计算.通过两个理论模型对实现的大地电磁三维正演并行算法进行试算,对比分析了多个节点机下程序的执行效率.测试结果表明,所实现的三维正演并行算法是正确的、高效的,为进一步的大地电磁三维反演并行算法研究奠定了重要基础.

References

[1]  谭捍东, 魏文博, Unsworth M等. 西藏高原南部雅鲁臧布江缝合带地区地壳电性结构研究. 地球物理学报, 2004, 47(4): 685-690. Tan H D, Wei W B, Unsworth M, et al. Crustal electrical conductivity structure beneath the Yarlung Zangbo Jiang structure in the southern Xizang plateau. Chinese J. Geophys. (in Chinese), 2004, 47(4): 685-690.
[2]  叶益信, 胡祥云, 金钢燮等. 大地电磁二维陡边界反演应用效果分析. 地球物理学进展, 2009, 24(1): 668-674. Ye Y X, Hu X Y, Jing G X, et al. Application analysis of sharp boundary inversion of magnetotelluric data for 2D structure. Progress in Geophys (in Chinese), 2009, 24(1): 668-674.
[3]  胡祖志, 胡祥云, 何展翔. 大地电磁非线性共轭梯度拟三维反演. 地球物理学报, 2006, 49(4): 1226-1234. Hu Z Z, Hu X Y, He Z Z. Pseudo-Three-Dimensional magnetotelluric inversion using nonlinear conjugate gradients. Chinese J. Geophys. (in Chinese), 2006, 49(4): 1226-1234.
[4]  杨迪琨, 胡祥云. 含噪声数据反演的概率描述. 地球物理学报, 2008, 51(3): 901-907. Yang D K, Hu X Y. Inversion of noisy data by probabilist methodology. Chinese J. Geophys. (in Chinese), 2008, 51(3): 901-907.
[5]  谭捍东, 余钦范, Booker J等. 大地电磁法三维快速松弛反演. 地球物理学报, 2003, 46(6): 850-854. Tan H D, Yu Q F, Booker J, et al. Three-Dimensional rapid relaxation inversion for the magnetotelluric method. Chinese J. Geophys. (in Chinese), 2003, 46(6): 850-854.
[6]  Hohmann G W. There-dimensional induced polarization and electromagnetic modeling. Geophysics, 1975, 40(2): 309-324.
[7]  Rodi W L. A technique for improving the accuracy of finite element solutions for magnetotelluric data. Geophys. J. Roy. Astr. Soc., 1976, 44(2): 483-506.
[8]  Wannamaker P E, Stodt J A, Rijo L. Two-dimensional topographic responses in magnetotelluric modeled using finite elements. Geophysics, 1986, 51(11): 2131-2144.
[9]  Smith J T. Conservative modeling of 3-D electromagnetic fields, Part I: Properties and error analysis. Geophysics, 1996, 61(5): 1308-1318.
[10]  Wannamaker P E, Hohmann G W, SanFilipo W A. Electromagnetic modeling of three-dimensional bodies in layered earths using integral equations. Geophysics, 1984, 49(1): 60-74.
[11]  Xiong Z H. Electromagnetic modeling of three-dimension structures by the method of system iteration using integral equations. Geophysics, 1992, 57(12): 1556-1561.
[12]  Siripunvaraporn W, Egbert G. An efficient data-subspace inversion method for 2-D magnetotelluric data. Geophysics, 2000, 65(3): 791-803.
[13]  Siripunvaraporn W, Uyeshima M, Egbert G. Three-dimensional inversion for Network-Magnetotelluric data. Earth Planets Space, 2004, 56(9): 893-902.
[14]  Siripunvaraporn W, Egbert G, Lenbury Y, et al. Three-dimensional magnetotelluric inversion: data-space method. Physics of the Earth and Planetary Interiors, 2005, 150(1-3): 3-14.
[15]  Siripunvaraporn W, Egbert G. WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation. Physics of the Earth and Planetary Interiors, 2009, 173(3-4): 317-329.
[16]  胡祖志, 胡祥云. 大地电磁三维反演方法综述. 地球物理学 进展, 2005, 20(1): 214-220. Hu Z Z, Hu X Y. Review of there dimensional magnetotelluric inversion methods. Progress in Geophys (in Chinese), 2005, 20(1): 214-220.
[17]  胡祥云, 胡祖志, 张荣等. 油气MT勘探COPROD-2S1模型数据的二维反演. 天然气工业, 2004, 25(9): 33-37. Hu X Y, Hu Z Z, Zhang R, et al. Two dimensional inversion of COPROD-2S1 modeling dataset in oil and gas magnetotelluric exploration. Natural Gas Industry (in Chinese), 2004, 25(9): 33-37.
[18]  张林波, 迟学斌, 莫则尧等. 并行计算导论. 北京: 清华大学出版社, 2006. Zhang L B, Chi X B, Mo Z Y, et al. Introduction to Parallel Computing. Beijing: Tsinghua University Press, 2006.
[19]  都志辉 编著. 高性能计算并行编程技术-MPI并行程序设计. 北京: 清华大学出版社, 2001. Du Z H. High-Pwered Computing Parallel Programming Technique-MPI Parallel Program Design (in Chinese). Beijing: Tsinghua University Press, 2001.
[20]  Mitsuhata Y, Uchida T. 3D magnetotelluric modeling using the T-Ω finite-element method. Geophysics, 2004, 69(1): 108-119.
[21]  Mackie R L, Smith J T, Madden T R. There-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example. Radio Science, 1994, 29(4): 923-935.
[22]  Smith J T. Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator. Geophysics, 1996, 61(5): 1319-1324.
[23]  Wannamaker P E. Advances in three-dimensional magnetotelluric modeling using integral equations. Geophysics, 1991, 56(11): 1716-1728.
[24]  Lin C H, Tan H D, Tong T. Three-dimensional conjugate gradient inversion of magnetotelluric full information data. Applied Geophysics, 2011, 8(1): 1-10.
[25]  谭捍东, 余钦范, Booker J等. 大地电磁法三维交错采样有限差分数值模拟. 地球物理学报, 2003, 46(5): 705-711. Tan H D, Yu Q F, Booker J, et al. Magnetotelluric three-dimensional modeling using the staggered-grid finite difference method. Chinese J. Geophys. (in Chinese), 2003, 46(5): 705-711.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133