全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三维非均匀地质模型中的逐段迭代射线追踪

DOI: 10.6038/cjg20131026, PP. 3514-3522

Keywords: 三维,块状模型,非均匀速度,射线追踪,逐段迭代

Full-Text   Cite this paper   Add to My Lib

Abstract:

地震射线追踪是地震定位、层析成像、偏移等领域的重要正演环节.随着这些领域研究的深入,针对传统的网格结构和层状结构在描述复杂地质模型遇到的很大困难,我们采用大小不等、形状各异的地质块组成的集合体来描述三维复杂地质模型,并用三角形面片来描述地质块之间的物性间断面,理论上可以描述任意复杂的地质模型.为适应任意非均匀速度分布的地质模型,基于费马原理,本文发展了与之相适应的逐段迭代射线追踪方法.该方法属于弯曲法范畴,对路径点采用一阶显式增量修正,相对于传统的迭代法,高效省时.数值试验表明,联合逐段迭代法和伪弯曲法的射线追踪扰动修正方案在三维复杂非均匀块状模型中有适用性和高效性.

References

[1]  Aki K, Richards P G. Quantitative Seismology: Theory and Methods. New York: W. H. Freeman and Co., 1980.
[2]  Vidale J E. Finite-difference calculation of travel times. Bull. Seismol. Soc. Am., 1988, 78(6): 2062-2076.
[3]  Lan H Q, Zhang Z J. Topography-dependent eikonal equation and its solver for calculating first-arrival traveltimes with an irregular surface. Geophys. J. Int., 2013, 193(2): 1010-1026, doi: 10.1093/gji/ggt036.
[4]  Cerveny V, Klimes L, Psencik I. Complete seismic-ray tracing in three-dimensional structures.//Doornbos D J. Seismological Algorithms. New York: Academic Press, 1988: 89-168.
[5]  Langan R T, Lerche I, Cutler R T. Tracing of rays through heterogeneous media: An accurate and efficient procedure. Geophysics, 1985, 50(9): 1456-1465.
[6]  Virieux J, Farra V. Ray tracing in 3-D complex isotropic media: An analysis of the problem. Geophysics, 1991, 56(12): 2057-2069.
[7]  Sun Y. Ray tracing in 3-D media by parameterized shooting. Geophys. J. Int., 1993, 114(1): 145-155.
[8]  Sambridge M, Braun J, McQueen H. Geophysical parameterization and interpolation of irregular data using natural neighbors. Geophys. J. Int., 1995, 122(3): 837-857.
[9]  徐涛, 徐果明, 高尔根等. 三维复杂介质的块状建模和试射射线追踪. 地球物理学报, 2004, 47(6): 1118-1126. Xu T, Xu G M, Gao E G, et al. Block modeling and shooting ray tracing in complex 3-D media. Chinese J. Geophys. (in Chinese), 2004, 47(6): 1118-1126.
[10]  Prothero W, Taylor W J, Eickemeyer J A. A fast two-point, three-dimensional raytracing algorithm using a simple step search method. Bull. Seismol. Soc. Am., 1988, 78: 1190-1198.
[11]  Pereyra V. Two-point ray tracing in general 3-D media. Geophys. Prospect., 1992, 40(3): 267-287.
[12]  Mao W J, Stuart G W. Rapid multi-wave-type ray tracing in complex 2-D and 3-D isotropic media. Geophysics, 1997, 62(1): 298-308.
[13]  Vinje V, Iversen E, Astebol K, et al. Estimation of multivalued arrivals in 3D models using wavefront construction-Part Ⅱ. Geophys. Prospect., 1996, 44(5): 819-842.
[14]  Moser T J. Shortest path calculation of seismic rays. Geophysics, 1991, 56(1): 59-67.
[15]  Zhang Z J, Wang G J, Teng J W, et al. CDP mapping to obtain the fine structure of the crust and upper mantle from seismic sounding data: An example for the southeastern China. Phys. Earth Planet. Inter., 2000, 122(1-2): 133-146.
[16]  Velis D R, Ulrych T J. Simulated annealing two-point ray tracing. Geophys. Res. Lett., 1996, 23(2): 201-204.
[17]  Velis D R, Ulrych T J. Simulated annealing ray tracing in complex three-dimensional media. Geophys. J. Int., 2001, 145(2): 447-459.
[18]  Zhang Z, Lin G, Chen J, et al. Inversion for elliptically anisotropic velocity using VSP reflection traveltimes. Geophys. Prospect., 2003, 51(2): 159-166.
[19]  Zhang Z J, Badal J, Li Y K, et al. Crust-upper mantle seismic velocity structure across Southeastern China. Tectonophysics, 2005, 395(1-2): 137-157.
[20]  Zhang Z J, Klemperer S L. West-east variation in crustal thickness in northern Lhasa block, central Tibet, from deep seismic sounding data. J. Geophys. Res., 2005, 110: 1-14, doi: 10.1029/2004JB003139.
[21]  Zhang Z J, Xu T, Zhao B, et al. Systematic variations in seismic velocity and reflection in the crust of Cathaysia: New constraints on intraplate orogeny in the South China continent. Gondwana Res., 2013, 24(3-4): 902-917.
[22]  徐果明, 卫山, 高尔根等. 二维复杂介质的块状建模及射线追踪. 石油地球物理勘探, 2001, 36(2): 213-219. Xu G M, Wei S, Gao E G, et al. Block model-building and ray-tracing in 2-D complicated medium. Oil Geophys. Prospect. (in Chinese), 2001, 36(2): 213-219.
[23]  Rawlinson N G, Houseman G A, Collins C D N. Inversion of seismic refraction and wide-angle reflection traveltimes for three-dimensional layered crustal structure. Geophys. J. Int., 2001, 145(2): 381-400.
[24]  Mallet J L. Discrete smooth interpolation. ACM Transactions on Graphics, 1989, 8(2): 121-144.
[25]  滕吉文, 张中杰, 白武明等. 岩石圈物理学. 北京: 科学出版社, 2003. Teng J W, Zhang Z J, Bai W M, et al. Lithosphere Physics (in Chinese). Beijing: Science Press, 2003.
[26]  陈运泰, 滕吉文, 张中杰. 地球物理学的回顾与展望. 地球科学进展, 2001, 16(5): 634-642. Chen Y T, Teng J W, Zhang Z J. Geophysics: The 20th century in retrospect and the 21st century in prospect. Advance in Earth Sciences (in Chinese), 2001, 16(5): 634-642.
[27]  Cerveny V. Seismic Ray Theory. Cambridge: Cambridge University Press, 2001.
[28]  Vidale J E. Finite-difference calculations of traveltimes in three dimensions. Geophysics, 1990, 55(5): 521-526.
[29]  Julian B R, Gubbins D. Three-dimensional seismic ray tracing. J. Geophys., 1977, 43: 95-113.
[30]  Thurber C H, Ellsworth W L. Rapid solution of ray tracing problems in heterogeneous media. Bull. Seismol. Soc. Am., 1980, 70(4): 1137-1148.
[31]  Pereyra V, Lee W H K, Keller H B. Solving two-point seismic-ray tracing problems in a heterogeneous medium. Part 1. A general adaptive finite difference method. Bull. Seismol. Soc. Am., 1980, 70(1): 79-99.
[32]  Keller H B, Perozzi D J. Fast seismic ray tracing. SIAM J. Appl. Math., 1983, 43(4): 981-992.
[33]  Um J, Thurber C. A fast algorithm for two-point seismic ray tracing. Bull. Seismol. Soc. Am., 1987, 77(3): 972-986.
[34]  Xu T, Xu G M, Gao E G, et al. Block modeling and segmentally iterative ray tracing in complex 3D media. Geophysics, 2006, 71(3): T41-T51.
[35]  Xu T, Zhang Z J, Gao E G, et al. Segmentally iterative ray tracing in complex 2D and 3D heterogeneous Block Models. Bull. Seismol. Soc. Am., 2010, 100(2): 841-850.
[36]  Vinje V, Iverson E, Gjystdal H. Traveltime and amplitude estimation using wavefront construction. Geophysics, 1993, 58(8): 1157-1166.
[37]  Zhao A H, Zhang Z J, Teng J W. Minimum travel time tree algorithm for seismic ray tracing: Improvement in efficiency. J. Geophys. Eng., 2004, 1(4): 245-251.
[38]  Zhang Z J, Wang Y H. Crustal structure and contact relationship revealed from deep seismic sounding data in South China. Phys. Earth Planet. Inter., 2007, 165(1-2): 114-126.
[39]  Zelt C A, Smith R B. Seimic traveltime inversion for 2-D crustal velocity structure. Geophys. J. Int., 1992, 108(1): 16-34.
[40]  Gjystdal H, Reinhardsen J E, stebol K. Computer representation of complex 3-D geological structures using a new "solid modeling" technique. Geophys. Prospect.,1985, 33(8): 1195-1211.
[41]  Pereyra V. Modeling, ray tracing, and block nonlinear travel-time inversion in 3-D. Pure and Applied Geophysics, 1996, 148(3-4): 345-386.
[42]  Xu T, Zhang Z J, Zhao A H, et al. Sub-triangle shooting ray tracing in complex 3D VTI media. Journal of Seismic Exploration, 2008, 17(2-3): 131-144.
[43]  Mallet J L. Discrete smooth interpolation in geometric modeling. Computer-Aided Design, 1992, 24(4): 178-193
[44]  Al-Chalabi M. Time-depth relationships for multiplayer depth conversion. Geophys. Prospect., 1997, 45(4): 715-720.
[45]  Thurber C H. Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J. Geophys. Res., 1983, 88(B10): 8226-8236.
[46]  Zhao D P, Hasegawa A, Horiuchi S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res., 1992, 97: 19909-19928.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133