Claerbout J F. Toward a unified theory of reflector mapping. Geophysics, 1971, 36(3): 467-481.
[2]
Symes W W. Reverse time migration with optimal checkpointing. Geophysics, 2007, 72(5): SM213-SM221.
[3]
Clapp R G. Reverse-time migration with random boundaries. SEG Expanded Abstracts, 2009: 2809-2813.
[4]
Feng B, Wang H Z, Tian L X, et al. A strategy for source wavefield reconstruction in reverse time migration. SEG Expanded Abstracts, 2011: 3164-3168.
[5]
Liu H W, Ding R W, Liu L, et al. Wavefield reconstruction methods for reverse time migration. J. Geophys. Eng., 2013, 10(1): 15004-15009.
[6]
NVIDIA. NVIDIA CUDA Programming Guide, Version 4.0. Santa Clara: NVIDIA, 2011.
[7]
Liu H W, Li B, Liu H, et al. The issues of prestack reverse time migration and solutions with Graphic Processing Unit implementation. Geophysical Prospecting, 2011, 60(5): 906-918.
[8]
Dablain M A. The application of high-order differencing to the scalar wave equation. Geophysics, 1986, 51(1): 54-66.
[9]
Hu W Y, Abubakar A, Habashy T M. Application of the nearly perfectly matched layer in acoustic wave modeling. Geophysics, 2007, 72(5): SM169-SM175.
[10]
McGarry R, Moghaddam P. NPML boundary conditions for second-order wave equations. SEG Expanded Abstract, 2009: 3590-3594.
[11]
Whitemore N D. Iterative depth migration by backward time propagation. SEG Expanded Abstracts, 1983, (1): 382-385.
[12]
Micikevicius P. 3D finite difference computation on GPUs using CUDA.//Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, Expanded Abstracts, 2008: 79-84.
[13]
Sypek P, Dziekonski A, Mrozowski M. How to render FDTD computations more effective using a graphics accelerator. IEEE Transactions on Magnetics, 2009, 45(3): 1324-1327.
[14]
Foltinek D, Eation D, Mahovsky J, et al. Industrial-scale reverse time migration on GPU hardware. SEG Expanded Abstracts, 2009: 2789-2793.
[15]
Michéa D, Komatitsch D. Accelerating a 3D finite-difference wave propagation code using GPU graphics cards. Geophys. J. Int., 2010, 182(1): 389-402.
[16]
Sun X Y, Suh S. Maximizing throughput for high performance TTI-RTM: From CPU-RTM to GPU-RTM. SEG Expanded Abstracts, 2011: 3179-3183.
[17]
刘红伟, 李博, 刘洪等. 地震叠前逆时偏移高阶有限差分算法及GPU实现. 地球物理学报, 2010, 53(7): 1725-1733. Liu H W, Li B, Liu H, et al. The algorithm of high order finite difference pre-stack reverse time migration and GPU implementation. Chinese J. Geophys. (in Chinese), 2010, 53(7): 1725-1733.
[18]
赵磊, 王华忠, 刘守伟等. 逆时深度偏移成像方法及其在CPU/GPU异构平台上的实现. 岩性油气藏, 2010,7:36-41. Zhao L, Wang H Z, Liu S W, et al. Reverse-time depth migration and its application at CPU/GPU platform. Lithologic Reservoirs (in Chinese), 2010,7:36-41.
[19]
李博, 刘红伟, 刘国峰等. 地震叠前逆时偏移算法的CPU/GPU实施对策. 地球物理学报, 2010, 53(12): 2938-2943. Li B, Liu H W, Liu G F, et al. Computational strategy of seismic pre-stack reverse time migration on CPU/GPU. Chinese J. Geophys. (in Chinese), 2010, 53(12): 2938-2943.
[20]
Fletcher R P, Robertsson J O A. Time-varying boundary conditions in simulation of seismic wave propagation. Geophysics, 2011, 76(1): A1-A6.
[21]
Shen X K, Clapp R G. Random boundary condition for low-frequency wave propagation. SEG Expanded Abstracts, 2011: 2962-2965.
[22]
Komatitsch D, Tromp J. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophysical Journal International, 2003, 154(1): 146-153.
[23]
Cummer S A. A simple, nearly perfectly matched layer for general electromagnetic media. IEEE Microwave and Wireless Components Letters, 2003, 13(3): 128-130.
[24]
Hu W Y, Cummer S A. The nearly perfectly matched layer is a perfectly matched layer. IEEE Antennas and Wireless Propagation Letters, 2004, 3(1): 137-140.