全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

弹性波逆时偏移中的稳定激发振幅成像条件

DOI: 10.6038/cjg20131027, PP. 3523-3533

Keywords: 弹性波,逆时偏移,成像条件,能量密度,稳定激发振幅,激发时间,归一化互相关

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对弹性波逆时偏移,提出稳定的激发振幅成像条件.在震源波场的正向传播过程中,计算每个网格点的能量,并保存最大能量密度的时刻和相应的波场值;在检波器波场的逆时传播过程中,在每个网格点提取最大能量密度时刻的检波器波场值,并利用保存的最大能量震源波场做归一化,获得角度依赖的反射系数成像剖面.相比于归一化互相关成像条件,该成像条件在震源波场的正向传播过程中无需存储波场快照,节省大量磁盘空间和I/O吞吐任务,提高了计算效率;相比于弹性波的激发时间成像条件,该成像条件自动校正了水平分量在震源两侧的极性反转,在多炮叠加时避免振幅损失.数值试验表明,与归一化成像条件相比,稳定激发振幅成像条件具有更小的计算量,偏移剖面的低频假象更弱,水平分量的成像能力更优,具有更高的空间分辨率.

References

[1]  Zhu J M, Lines L R. Comparison of Kirchhoff and reverse-time migration methods with applications to prestack depth imaging of complex structures. Geophysics, 1998, 63(4): 1166-1176.
[2]  Zhang Y, Zhang G Q. One-step extrapolation method for reverse time migration. Geophysics, 2009, 74(4): A29-A33.
[3]  Biondi B, Shan G J. Prestack imaging of overturned reflections by reverse time migration. SEG Int''1 Exposition and 72nd Annual Meeting, 2002.
[4]  Kaelin B, Guitton A. Imaging condition for reverse time migration. SEG New Orleans Annual Meeting, 2006.
[5]  Yan J, Sava P. Isotropic angle-domain elastic reverse time migration. Geophysics, 2008, 73(6): S229-S239.
[6]  Chang W F, McMechan G A. Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition. Geophysics, 1986, 51(1): 67-84.
[7]  Costa J C, Silva Neto F A, Alcantara R M, et al. Obliquity-correction imaging condition for reverse time migration. Geophysics, 2009, 74(3): S57-S66.
[8]  Zhang Y, Sun J. Practical issues of reverse time migration: true amplitude gathers, noise removal harmonic-source encoding. CPS/SEG Beijing 2009 International Geophysical Conference & Exposition, 2009, 27(1): 1-5.
[9]  Zhang Y, Xu S, Bleistein N, et al. True-amplitude, angle domain, common-image gathers from one-way wave-equation migrations. Geophysics, 2007, 72(1): S49-S58.
[10]  Deng F, McMechan G A. True-amplitude prestack depth migration. Geophysics, 2007, 72(3): S155-S166.
[11]  刘红伟, 李博, 刘洪等. 地震叠前逆时偏移高阶有限差分算法及GPU实现. 地球物理学报, 2010, 53(7): 1725-1733. Liu H W, Li B, Liu H, et al. The algorithm of high order finite differenc pre-stack reverse time migration GPU implementation. Chinese J. Geophys. (in Chinese), 2010, 53(7): 1725-1733.
[12]  Fletcher R F, Fowler P, Kitchenside P, et al. Suppressing artifacts in prestack reverse time migration. 75th Annual International Meeting, SEG, Exped Abstracts, 2005, 24(1): 2049-2051.
[13]  Feng B, Wang H Z. Reverse time migration with source wavefield reconstruction strategy. J. Geophys. Eng., 2012, 9(1): 69-74.
[14]  Nguyen B D, McMechan G A. Excitation amplitude imaging condition for prestack reverse-time migration. Geophysics, 2013, 78(1): S37-S46.
[15]  Chang W F, McMechan G A. Elastic reverse time migration. Geophysics, 1987, 52(10): 1356-1375.
[16]  Kaelin B, Guitton A. Imaging condition for reverse time migration. In 76th Annual International Meeting Exposition, SEG, Expanded Abstracts, 2006: 2594-2598.
[17]  Virieux J. SH-wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics, 1984, 49(11): 1933-1942.
[18]  Virieux J. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics, 1986, 51(4): 889-901.
[19]  Hanitzsch C. Comparison of weights in prestack amplitude-preserving Kirchhoff depth migration. Geophysics, 1997, 62(6): 1812-1816.
[20]  Baina R, Thierry P, Calandra H, et al. 3D preserved-amplitude prestack depth migration and amplitude versus angle relevance. The Leading Edge, 2002, 21(12): 1237-1241.
[21]  贺振华. 反射地震资料偏移处理与反演方法. 重庆: 重庆大学出版社, 1989. He Z H. Reflection Seismic Data Migration Processing Inversion (in Chinese). Chongqing: Chongqing University Press, 1989.
[22]  Cerveny V, Molotkov I A, Psencik I. Ray Theory in Seismology. Charles: Charles University Press, 1977.
[23]  Poole T L, Curtis A, Robertsson J O, et al. Deconvolution imaging conditions and cross-talk suppression. Geophysics, 2010, 75(6): W1-W12.
[24]  Cerveny V. Ray synthetic seismograms for complex two-dimensional three dimensional structures. J. Geophys., 1985, 58: 2-26.
[25]  Vinje V, Iversen E, Gjoystdal H. Traveltime apmlitude estimation using wavefront construction. Geophysics, 1993, 58(8): 1157-1166.
[26]  Shin C, Ko S, Kim W, et al. Traveltime calculations from frequency-domain downward-continuation algorithms. Geophysics, 2003, 68(4): 1380-1388.
[27]  秦义龙, 张中杰, Changsoo S等. 利用单频双程波动方程计算初至走时及其振幅. 地球物理学报, 2005, 48(2): 423-428. Qin Y L, Zhang Z J, Changsoo S, et al. First-arrival traveltime and amplitude calculation from monochromatic two-way wave equation in frequency domain. Chinese J. Geophys. (in Chinese), 2005, 48(2): 423-428.
[28]  Hastings F D, Schneider J B, Broschat S L. Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation. Journal Acoustical Society of America, 1996, 100(5): 3061-3069.
[29]  Chew W C, Liu Q H. Using perfectly matched layers for elastodynamics.//Proceedings of the IEEE Antennas and Propagation Society International Symposium. Baltimore, MD, USA: IEEE, 1996, 1: 366-369.
[30]  Collino F, Tsogka C. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics, 2001, 66(1): 294-307.
[31]  Cerveny V. Gaussian beam synthetic seismograms. J. Geophys., 1985, 58: 44-72.
[32]  Lambará G, Lucio P S, Hanyga A. Two-dimensional multivalued traveltime amplitude maps by uniform sampling of a ray field. Geophys. J. Int., 1996, 125(2): 584-598.
[33]  Shin C, Min D, Marfurt K J, et al. Traveltime amplitude calculations using the damped wave solution. Geophysics, 2002, 67(5): 1637-1647.
[34]  McMechan G A. Migration by extrapolation of time-dependent boundary values. Geophysical Prospecting, 1983, 31(3): 413-420.
[35]  Loewnthal D, Mufti I R. Reversed time migration in spatial frequency domain. Geophysics, 1983, 48(5): 627-635.
[36]  Whitmore N D. Iterative depth migration by backward time propagation. 53rd Annual International Meeting, SEG, Expanded Abstracts, 1983: 827-830.
[37]  McMechan G A, Chang W F. 3D acoustic prestack reverse time migration. Geophysical Prospecting, 1990, 38(7): 737-756.
[38]  Mulder W A, Plessix R E. A comparison between one-way and two-way wave-equation migration. Geophysics, 2004, 69(6): 1491-1504.
[39]  Baysal E, Kosloff D D, Sherwood J W C. Reverse time migration. Geophysics, 1983, 28(11): 1514-1524.
[40]  Yoon K, Marfurt K J, Starr W. Challenges in reverse-time migration. SEG Int''1 Exposition and 74th Annual Meeting, 2004.
[41]  Chattopadhyay S, McMechan G A. Imaging conditions for prestack reverse-time migration. Geophysics, 2008, 73(3): S81-S89.
[42]  Claerbout J M. Toward a unified theory of reflector mapping. Geophysics, 1971, 36(3): 467-481.
[43]  Alejandro A V, Biondi B. Deconvolution imaging condition for reverse-time migration. Standford Exploration Project, 2002, 112: 83-96.
[44]  Yoon K, Marfurt K J. Reverse-time migration using the Poynting vector. Exploration Geophysics, 2006, 37(1): 102-107.
[45]  Liu F Q, Zhang G Q, Scott A M, et al. Reverse time migration using one-way wavefield imaging condition. 77th Annual Internation Meeting, SEG, Exped Abstracts, 2007, 26(1): 2170-2174.
[46]  Baysal E, Kosloff D D, Sherwood J W C. A two-way nonreflecting wave equation. Geophysics, 1984, 49(2): 132-141.
[47]  刘红伟, 刘洪, 邹振. 地震叠前逆时偏移中的去噪与存储. 地球物理学报, 2010, 53(9): 2171-2180. Liu H W, Liu H, Zou Z. The problems of denoise storage in seismic reverse time migration. Chinese J. Geophys. (in Chinese), 2010, 53(9): 2171-2180.
[48]  Loewenthal D, Stoffa P L, Faria E L. Suppressing the unwanted reflections of the full wave equation. Geophysics, 1987, 52(7): 1007-1012.
[49]  Clapp R G. Reverse time migration with random boundaries. 79th Annual International Meeting, SEG Expanded Abstracts, 2009, 28: 2809-2813.
[50]  Symes W W. Reverse time migration with optimal checkpointing. Geophysics, 2007, 72(5): SM213-SM221.
[51]  Schleicher J, Costa J C, Novais A. A comparison of imaging conditions for wave-equation shot-profile migration. Geophysics, 2008, 73(6): S219-S227.
[52]  杨仁虎, 常旭, 刘伊克. 叠前逆时偏移影响因素分析. 地球物理学报, 2010, 53(8): 1902-1913. Yang R H, Chang X, Liu Y K. The influence factors analyses of imaging precision in pre-stack reverse time migration. Chinese J. Geophys. (in Chinese), 2010, 53(8): 1902-1913.
[53]  Loewenthal D, Hu L Z. Two methods for computing the imaging condition for common shot pre-stack migration. Geophysics, 1991, 56(3): 378-381.
[54]  李文杰, 魏修成, 宁俊瑞等. 叠前弹性波逆时深度偏移及波场分离技术探讨. 物探化探计算技术, 2008, 30(6): 447-456. Li W J, Wei X C, Ning J R, et al. The discussion of reverse time depth migration wavefield separation for pre-stack elastic data. Computing Techniques for Geophysical Geochemical Exploration (in Chinese), 2008, 30(6): 447-456.
[55]  André Bulcao, Djalma Manoel Soares Filho, Webe Joao Mansur. Improved quality of depth images using reverse time migration. 77th Annual International Meeting, SEG Expanded Abstracts, 2007, 26(1): 2407-2411.
[56]  Moczo P, Kristek J, Vavrycuk V, et al. 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic arithmetic averaging of elastic moduli densities. Bull. Seism. Soc. Am., 2002, 92(8): 3042-3066.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133