全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水力压裂对速度场及微地震定位的影响

DOI: 10.6038/cjg20131030, PP. 3552-3560

Keywords: 水力压裂,速度建模,射线追踪,微地震定位

Full-Text   Cite this paper   Add to My Lib

Abstract:

水力压裂是页岩气开发过程中的核心增产技术,微地震则广泛用于压裂分析、水驱前缘监测和储层描述.微地震反演过程中,用于反演的速度模型往往基于测井、地震或标定炮资料构建,忽略了压裂过程中裂缝及孔隙流体压力变化对地层速度的影响.本文首先基于物质守恒、渗流理论和断裂力学模拟三维水力压裂过程,得到地下裂缝发育特征和孔隙压力分布.继而根据Coates-Schoenberg方法和裂缝柔量参数计算裂缝和孔隙压力对速度场的影响,得到压裂过程中的实时速度模型.最后利用三维射线追踪方法正演微地震走时和方位信息,并采用常规微地震定位方法反演震源位置及进行误差分析.数值模拟结果表明,检波器空间分布影响定位精度,常规方法的定位误差随射线路径在压裂带中传播距离增加而变大,且不同压裂阶段的多点反演法与单点极化法精度相当.

References

[1]  张广明. 水平井水力压裂数值模拟研究. 合肥: 中国科学技术大学, 2010. Zhang G M. A Numerical Simulation Study on Hydraulic Fracturing of Horizontal Wells (in Chinese). Hefei: University of Science and Technology of China, 2010.
[2]  Brady B, Elbel J, Mack M, et al. Cracking rock: progress in fracture treatment design. Oilfield Review, 1992, 4(4): 8-11.
[3]  张山, 刘清林, 赵群等. 微地震监测技术在油田开发中的应用. 石油物探, 2002, 41(2): 226-231. Zhang S, Liu Q L, Zhao Q, et al. Application of microseismic monitoring technology in development of oil field. Geophysical Prospecting for Petroleum (in Chinese), 2002, 41(2): 226-231.
[4]  Warpinski N R, Sullivan R B, Uhl J E, et al. Improved microseismic fracture mapping using perforation timing measurements for velocity calibration. Society of Petroleum Engineers Journal, 2005, 10(1): 14-23.
[5]  宋维琪, 王新强, 高艳可. 地面监测微地震事件等效速度反演定位方法. 石油物探, 2012, 51(6): 606-612, 632. Song W Q, Wang X Q, Gao Y K. The inversion positioning methods of the surface microseismic with equivalent velocity. Geophysical Prospecting for Petroleum (in Chinese), 2012, 51(6): 606-612, 632.
[6]  Coates R T, Schoenberg M. Finite-difference modeling of faults and fractures. Geophysics, 1995, 60(5): 1514-1526.
[7]  Vlastos S, Liu E, Main I G, et al. Dual simulations of fluid flow and seismic wave propagation in a fractured network: effects of pore pressure on seismic signature. Geophys. J. Int., 2006, 166(2): 825-838.
[8]  Block L V, Cheng C H, Fehler M C, et al. Seismic imaging using microearthquake induced by hydraulic fracturing. Geophysics, 1994, 59(1): 102-112.
[9]  吴忠宝, 胡文瑞, 宋新民等. 天然微裂缝发育的低渗透油藏数值模拟. 石油学报, 2009, 50(5): 727-730, 734. Wu Z B, Hu W R, Song X M, et al. Numerical simulation on low-permeability reservoir with abundant natural micro-fractures. Acta Petrolei Sinica (in Chinese), 2009, 50(5): 727-730, 734.
[10]  韩大匡, 陈钦雷, 闫存章. 油藏数值模拟基础. 北京: 石油工业出版社, 1993. Han D K, Chen Q L, Yan C Z. Fundamentals of Numerical Reservoir Simulation (in Chinese). Beijing: Petroleum Industry Press, 1993.
[11]  Ji L J, Settari A, Sullivan R B. A novel hydraulic fracturing model fully coupled with geomechanics and reservoir simulation. Society of Petroleum Engineers Journal, 2009, 14(3): 423-430.
[12]  Akinson B K. Fracture Mechanics of Rock. Orlando: Academic Press, 1989.
[13]  刘建军, 冯夏庭, 裴桂红. 水力压裂三维数学模型研究. 岩石力学与工程学报, 2003, 22(12): 2042-2046. Liu J J, Feng X T, Fei G H. Study on mathematical,model of three dimensional hydraulic fracturing. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 2003, 22(12): 2042-2046.
[14]  Shapiro S A, Dinske C. Fluid-induced seismicity: Pressure diffusion and hydraulic fracturing. Geophysical Prospecting, 2009, 57(2): 301-310.
[15]  Vlastos S, Liu E, Main I G, et al. Numerical simulation of wave propagation in media with discrete distributions of fractures: effects of fracture sizes and spatial distributions. Geophys. J. Int., 2003, 152(3): 649-668.
[16]  Drew J D, Leslie D, Armstrong P, et al. Automated microseismic event detection and location by continuous spatial mapping. SPE 95113, 2005.
[17]  Maxwell S C, Rutledge J, Jones R, et al. Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics, 2010, 75(5): 75A129-75A137.
[18]  Burch D N, Daniels J, Gilard M, et al. Live hydraulic fracture monitoring and diversion. Oilfield Review, 2009, 21(3): 18-31.
[19]  Khadhraoui B, Leslie D, Drew J, et al. Real-time detection and localization of microseismic events. SEG, Denver 2010 Annual Meeting, 2010.
[20]  Rentsch S, Buske S, Luth S, et al. Fast location of seismicity: A migration-type approach with application to hydraulic-fracturing data. Geophysics, 2007, 72(1): S33-S40.
[21]  Ran X, Sava P. Probabilistic microearthquake location for reservoir monitoring. Geophysics, 2010, 75(3): MA9-MA26.
[22]  Pei D H, Quirein J A, Cornish B E, et al. Velocity calibration for microseismic monitoring: applying smooth layered models with and without perforation timing measurements. SPE 115722, 2008.
[23]  Daley T M, Schoenberg M A, Rutqvist J, et al. Fractured reservoirs: An analysis of coupled elastodynamic and permeability changes from pore-pressure variation. Geophysics, 2006, 71(5): 33-41.
[24]  Hummel N, Shapiro S A. Microseismic estimates of hydraulic diffusivity in case of non-linear fluid-rock interaction. Geophys. J. Int., 2012, 188(3): 1441-1453.
[25]  Wangen M. Finite element modeling of hydraulic fracturing on a reservoir scale in 2D. Journal of Petroleum Science and Engineering, 2011, 77(3-4): 274-285.
[26]  张美根, 程冰洁, 李小凡等. 一种最短路径射线追踪的快速算法. 地球物理学报, 2006, 49(5): 1467-1474. Zhang M G, Cheng B J, Li X F, et al. A fast algorithm of shortest path ray tracing. Chinese J. Geophys. (in Chinese), 2006, 49(5): 1467-1474.
[27]  张霖斌, 刘迎曦, 赵振峰等. 有限差分法射线追踪. 石油地球物理勘探, 1993, 28(6): 673-677, 684. Zhang L B, Liu Y X, Zhao Z F, et al. Finite-difference ray tracing. Oil Geophysical Prospecting (in Chinese), 1993, 28(6): 673-677, 684.
[28]  Shapiro S A, Rentsch S, Rothert E. Characterization of hydraulic properties of rocks using probability of fluid-induced microearthquakes. Geophysics, 2005, 70(2): F27-F33.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133