全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

地震波动方程的局部间断有限元方法数值模拟

DOI: 10.6038/cjg20131025, PP. 3507-3513

Keywords: 声波方程,局部间断有限元方法,数值模拟,并行性,计算效率,精度

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,随着地震波数值模拟对计算精度和效率的要求越来越高,间断有限元方法开始受到越来越多的关注.本文中,针对具有吸收边界条件的二维地震声波波动方程,作者提出了一种基于局部间断有限元方法的数值模拟算法.该算法在空间上使用局部间断有限元方法进行离散,在时间上采用了显式蛙跳格式.在这种时空离散的组合方式下,每个时间步上,此算法在空间剖分的每个单元上的求解计算是相互独立的,因而具有极高的并行性.通过数值算例,我们将该算法与连续有限元方法进行了比较.结果表明,本算法不仅具有对起伏构造的良好适应性,而且在计算效率和计算精度等方面,都具有优越性.

References

[1]  董良国, 马在田, 曹景忠等. 一阶弹性波方程交错网格高阶差分解法. 地球物理学报, 2000, 43(3): 411-419. Dong L G, Ma Z T, Cao J Z, et al. A staggered-grid high-order difference method of one-order elastic wave equation. Chinese J. Geophys. (in Chinese), 2000, 43(3): 411-419.
[2]  殷文, 印兴耀, 吴国忱等. 高精度频率域弹性波方程有限差分方法及波场模拟. 地球物理学报, 2006, 49(2): 561-568. Yin W, Yin X Y, Wu G C, et al. The method of finite difference of high precision elastic wave equations in the frequency domain and wave-field simulation. Chinese J. Geophys. (in Chinese), 2006, 49(2): 561-568.
[3]  薛东川, 王尚旭, 焦淑静. 起伏地表复杂介质波动方程有限元数值模拟方法. 地球物理学进展, 2007, 22(2): 522-529. Xue D C, Wang S X, Jiao S J. Wave equation finite-element modeling including rugged topography and complicated medium. Progress in Geophysics (in Chinese), 2007, 22(2): 522-529.
[4]  张美根, 王妙月, 李小凡等. 各向异性弹性波场的有限元数值模拟. 地球物理学进展, 2002, 17(3): 384-389. Zhang M G, Wang M Y, Li X F, et al. Finite element forward modeling of anisotropic elastic waves. Progress in Geophysics (in Chinese), 2002, 17(3): 384-389.
[5]  LeVeque R J. Finite Volume Methods for Hyperbolic Problems. Cambridge: Cambridge University Press, 2002.
[6]  Cockburn B, Shu C W. Tvb Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general framework. Mathematics of Computation, 1989, 52: 411-435.
[7]  Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific of Computing, 2001, 16(3): 173-261.
[8]  Cockburn B, Shu C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal of Numerical Analysis, 1998, 35(6): 2440-2463.
[9]  Arnold D N, Brezzi F, Cockburn B, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM Journal of Numerical Analysis, 2002, 39(5): 1749-1779.
[10]  K?ser M, Dumbser M. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes I: the two-dimensional isotropic case with external source terms. Geophys. J. Int., 2006, 166(2): 855-877.
[11]  Dumbser M, K?ser M. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes- II. The three-dimensional isotropic case. Geophys. J. Int., 2006, 167(1): 319-336.
[12]  De la Puente J, K?ser M, Dumbser M, et al. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes IV: anisotropy. Geophys. J. Int., 2007, 169(3): 1210-1228.
[13]  De la Puente J, Dumbse M, K?ser M, et al. Discontinuous Galerkin methods for wave propagation in poroelastic media. Geophysics, 2008, 73(5): T77-T97.
[14]  Delcourte S, Fezoui L, Glinsky-Olivier N. A high-order discontinuous Galerkin method for the seismic wave propagation. ESAIM: Proceedings, 2009, 27(3): 70-89.
[15]  De Basabe J D, Sen M K, Wheeler M F. The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion. Geophys. J. Int., 2008, 175(1): 83-93.
[16]  Ainsworth M, Monk P, Muniz W. Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. Journal of Scientific Computing, 2006, 27(1-3): 5-40.
[17]  王月英, 孙成禹. 弹性波动方程数值解的有限元并行算法. 中国石油大学学报(自然科学版), 2006, 30(5): 27-30. Wang Y Y, Sun C Y. Finite element parallel algorithm for numerical solution of elastic wave equation. Journal of China University of Petroleum (Edition of Natural Science) (in Chinese), 2006, 30(5): 27-30.
[18]  邓玉琼, 张之立. 弹性波的三维有限元模拟. 地球物理学报, 1990, 33(1): 41-53. Deng Y Q, Zhang Z L. Three-dimensional finite element modeling of elastic waves. Chinese J. Geophys. (in Chinese), 1990, 33(1): 41-53.
[19]  Ma S. Hybrid modeling of elastic P-SV wave motion: A combined finite-element andstraggered-grid finite-difference approach. Bulletin of the Seismological Society of America, 2004, 94(4): 1557-1563.
[20]  Yang J H, Liu T, Tang G Y, et al. Modeling seismic wave propagation within complex structures. Applied Geophysics, 2009, 6(1): 30-41.
[21]  Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation, Technical Report, LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133