全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

查干凹陷大地热流

DOI: 10.6038/cjg20130917, PP. 3038-3050

Keywords: 查干凹陷,银根—额济纳旗盆地,大地热流,岩石热导率,地温梯度

Full-Text   Cite this paper   Add to My Lib

Abstract:

查干凹陷是银根—额济纳旗盆地最具勘探潜力的凹陷,但是查干凹陷及整个银根—额济纳旗盆地的大地热流研究仍为空白,严重制约该盆地的油气资源的评价.本文通过测试19口井107块岩芯的岩石热导率和岩石热导率原位校正,利用协和平均公式计算得到查干凹陷各地层的岩石热导率大小;并利用9口井的温度数据,结合岩石热导率数据对查干凹陷的地温梯度和大地热流进行了计算.研究结果表明查干凹陷具有构造稳定区和构造活动区之间的中温型地温场特征,其平均地温梯度和大地热流分别为33.6℃/km,74.5mW/m2.本文的研究成果为查干凹陷及银根—额济纳旗盆地油气资源评价提供地热参数.

References

[1]  Czechowski L, Kossacki K J. Thermal convection in the porous methane-soaked regolith in Titan: Finite amplitude convection. Icarus, 2012, 217(1): 130-143.
[2]  Hasterok D, Chapman D S, Davis E E. Oceanic heat flow: Implications for global heat loss. Earth and Planetary Science Letters, 2011, 311(3-4): 386-395.
[3]  Bjrk G, Winsosr P. The deep waters of the Eurasian Basin, Arctic Ocean: Geothermal heat flow, mixing and renewal. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(7): 1253-1271.
[4]  Ranalli G, Rybach L. Heat flow, heat transfer and lithosphere rheology in geothermal areas: Features and examples. Journal of Volcanology and Geothermal Research, 2005, 148(1-2): 3-19.
[5]  易善锋. 世界地热测量情况简介. 地质快报, 1966, (4): 10-13. Yi S F. Introduction to the world geothermal survey case. Geology Express (in Chinese), 1966, (4): 10-13.
[6]  冯昌格, 刘绍文, 王良书等. 塔里木盆地中央隆起区现今地温场分布特征及其与油气的关系. 地球科学——中国地质大学学报, 2010, 35(4): 645-656. Feng C G, Liu S W, Wang L S, et al. Present-day geotemperature field characteristics in the central uplift area of the Tarim Basin and implications for hydrocarbon generation and preservation. Earth Science-Journal of China University of Geosciences (in Chinese), 2010, 35(4): 645-656.
[7]  崔军平, 任战利, 肖晖等. 海拉尔盆地地温分布及控制因素研究. 地质科学, 2007, 42(4): 656-665. Cui J P, Ren Z L, Xiao H, et al. Study on temperature distribution and controlling factors in the Hailar basin. Chinese Journal of Geology (in Chinese), 2007, 42(4): 656-665.
[8]  刘丽, 任战利, 崔营滨等. 东濮凹陷现今地温场分布特征. 地质科学, 2007, 42(4): 787-794. Liu L, Ren Z L, Cui Y B, et al. Distribution of present-day geothermal field in the Dongpu sag. Chinese Journal of Geology (in Chinese), 2007, 42(4): 787-794.
[9]  孙占学, 张文, 胡宝群等. 沁水盆地大地热流与地温场特征. 地球物理学报, 2006, 49(1): 130-134. Sun Z X, Zhang W, Hu B Q, et al. Features of heat flow and the geothermal field of the Qinshui Basin. Chinese Journal of Geophysics (in Chinese), 2006, 49(1): 130-134.
[10]  王良书, 李成, 刘绍文等. 库车前陆盆地大地热流分布特征. 石油勘探与开发, 2005, 32(4): 79-83. Wang L S, Li C, Liu S W, et al. Terrestrial heat flow distribution in Kuqa foreland basin, Tarim, NW China. Petroleum Exploration & Development (in Chinese), 2005, 32(4): 79-83.
[11]  王永新, 冯殿生, 汪集旸等. 辽河盆地东部凹陷现今地温场及热历史的研究. 地球物理学报, 2003, 46(2): 197-202. Wang Y X, Feng D S, Wang J Y, et al. Present-day geothermal field and thermal history of eastern subdepression, Liaohe basin. Chinese Journal of Geophysics (in Chinese), 2003, 46(2): 197-202.
[12]  王良书, 刘绍文, 肖卫勇等. 渤海盆地大地热流分布特征. 科学通报, 2002, 47(2): 151-155. Wang L S, Liu S W, Xiao W Y, et al. Heat flow distribution characteristics of Bohai Sea. Chinese Science Bulletin (in Chinese), 2002, 47(2): 151-155.
[13]  Zuo Y H, Qiu N S, Zhang Y, et al. Geothermal regime and hydrocarbon kitchen evolution of the offshore Bohai Bay basin, North China. AAPG Bulletin, 2011, 95(5): 749-769.
[14]  Gong Y L, Zhang H, Ye T F. Heat flow density in Bohai Bay Basin: Data set compilation and interpretation. Procedia Earth and Planetary Science, 2011, 3(2): 212-216.
[15]  Brigaud F, Chapman D S, Le Douaran S. Estimating thermal conductivity in sedimentary basins using lithologic data and geophysical well logs. AAPG Bulletin, 1990, 74(9): 1459-1477.
[16]  Stefánsson V. The relationship between thermal conductivity and porosity of rocks. // Middleton M ed. The Nordic Petroleum Technology III, 1977: 201-219.
[17]  Jougout D, Revil A. Thermal conductivity of unsaturated clay-rocks. Hydrology and Earth System Sciences, 2010, 14(1): 91-98.
[18]  Liu M, Cui X J, Liu F. Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo-Asian collision? Tectonophysics, 2004, 393(1-4): 29-42.
[19]  许志琴, 杨经绥, 李海兵等. 印度-亚洲碰撞大地构造. 地质学报, 2011, 85(1): 1-33. Xu Z Q, Yang J S, Li H B, et al. On the tectonics of the India-Asia collision. Acta Geologica Sinica (in Chinese), 2011, 85(1): 1-33.
[20]  汪集旸, 黄少鹏. 中国大陆地区大地热流数据汇编(第二版). 地震地质, 1990, 12(4): 351-366. Wang J Y, Huang S P. Compilation of heat flow data in the China continental area (2nd edition). Seismology and Geology (in Chinese), 1990, 12(4): 351-366.
[21]  胡圣标, 何丽娟, 汪集旸. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报, 2001, 44(5): 611-626. Hu S B, He L J, Wang J Y. Compilation of heat flow data in the China continental area (3rd edition). Chinese Journal of Geophysics (in Chinese), 2001, 44(5): 611-626.
[22]  崔军平, 任战利. 内蒙古海拉尔盆地乌尔逊凹陷现今地温场特征. 现代地质, 2011, 25(3): 589-593. Cui J P, Ren Z L. Characteristics of present geothermal field of Wuerxun depression in Hailaer basin, Inner Mongolia. Geosciences (in Chinese), 2011, 25(3): 589-593.
[23]  Tan J Q, Ju Y W, Zhang W Y, et al. Heat flow and its coalbed gas effects in the central-south area of the Huaibei coalfield, eastern China. Sci. China Earth Sci., 2010, 53(5): 672-682.
[24]  邱楠生, 魏刚, 李翠翠等. 渤海海域现今地温场分布特征. 石油与天然气地质, 2009, 30(4): 412-419. Qiu N S, Wei G, Li C C, et al. Distribution features of current geothermal field in the Bohai Sea waters. Oil & Gas Geology (in Chinese), 2009, 30(4): 412-419.
[25]  蔡迎春, 付晓飞. 滨北地区中浅层现今地温场及热演化历史. 大庆石油地质与开发, 2005, 24(4): 8-10. Cai Y C, Fu X F. Current geothermal field of medium-shallow layers in Binbei area and its thermal evolution history. Petroleum Geology & Oilfield Development in Daqing (in Chinese), 2005, 24(4): 8-10.
[26]  Cosenza P, Guérin R, Tabbagh A. Relationship between thermal conductivity and water content of soils using numerical modelling. European Journal of Soil Science, 2003, 54(3): 581-588.
[27]  邱楠生. 中国西北部盆地岩石热导率和生热率特征. 地质科学, 2002, 37(2): 196-206. Qiu N S. Characters of thermal conductivity and radiogenic heat production rate in basins of northwest China. Chinese Journal of Geology (in Chinese), 2002, 37(2): 196-206.
[28]  Chapman D S, Keho T H, Michael S, et al. Heat flow in the Uinta Basin determined from bottom hole temperature (BHT) data. Geophysics, 1984, 49(4): 453-466.
[29]  Artemieva I M. Global 1°×1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution. Tectonophysics, 2006, 416(1-4): 245-277.
[30]  Morgan P. Heat flow in rift zone. // Páalmason G ed. Continental and Oceanic Rifts. Geodynamics Series. Washington DC: AGU, 1982, 8: 107-122.
[31]  何丽娟, 熊亮萍, 汪集旸. 南海盆地地热特征. 中国海上油气(地质), 1998, 12(2): 87-90. He L J, Xiong L P, Wang J Y. The geothermal characteristics in South China Sea. China Offshore Oil and Gas (Geology) (in Chinese), 1998, 12(2): 87-90.
[32]  陈墨香. 华北地热. 北京: 科学出版社, 1988: 1-218. Chen M X. Geothermal in the North China (in Chinese). Beijing: Science Press, 1988: 1-218.
[33]  Wang S J, Hu S B, Li T J, et al. Terrestrial Heat flow in Junggar basin, Northwest China. Chinese Science Bulletin, 2000, 45(19): 1808-1813.
[34]  邱楠生. 柴达木盆地现代大地热流和深部地温特征. 中国矿业大学学报, 2001, 30(4): 412-415. Qiu N S. Research on heat flow and temperature distribution of the Qaidam Basin. Journal of China University of Mining & Technology (in Chinese), 2001, 30(4): 412-415.
[35]  车自成, 刘良, 刘洪福等. 阿尔金断裂系的组成及相关中新生代含油气盆地的成因特征. 中国区域地质, 1998, 17(4): 377-384. Che Z C, Liu L, Liu H F, et al. The constituents of the Altun fault system and genetic characteristics of related Meso-Cenozoic petroleum bearing basin. Regional Geology of China (in Chinese), 1998, 17(4): 377-384.
[36]  许志琴, 杨经绥, 张建新等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制. 地质学报, 1999, 73(3): 193-205. Xu Z Q, Yang J S, Zhang J X, et al. A comparison between the tectonic units on the two sides of the Altun sinistral strike-slip fault and the mechanism of lithospheric shearing. Acta Geologica Sinica (in Chinese), 1999, 73(3): 193-205.
[37]  刘永江, 葛肖虹, Genser J等. 阿尔金断裂带构造活动的40Ar/39Ar年龄证据. 科学通报, 2003, 48(12): 1335-1341. Liu Y J, Ge X H, Genser J, et al. 40Ar/39Ar age evidence for Altyn fault tectonic activities in Western China. Chinese Science Bulletin, 2003, 48(18): 2024-2030.
[38]  钟福平, 钟建华, 王毅等. 银根—额济纳旗盆地苏红图坳陷早白垩世火山岩对阿尔金断裂研究的科学意义. 地学前缘, 2011, 18(3): 233-240. Zhong F P, Zhong J H, Wang Y, et al. The Early Cretaceous volcanic rocks in Suhongtu depression in Yingen-Ejinaqi Basin: Its scientific significance to the research of Altun Fault. Earth Science Frontiers (in Chinese), 2011, 18(3): 233-240.
[39]  左银辉, 马维民, 邓已寻等. 查干凹陷中、新生代热史及烃源岩热演化. 地球科学——中国地质大学学报, 2013, 38(3): 553-560. Zuo Y H, Ma W M, Deng Y X, et al. Mesozoic and Cenozoic thermal history and source rock thermal evolution history in the Chagan Sag, Inner Mongolia. Earth Science-Journal of China University of Geosciences (in Chinese), 2013, 38(3): 553-560.
[40]  陈长春. 西伯利亚板块旋转漂移运动刍论. 世界地理研究, 1994, (1): 67-71. Chen C C. A personal view on rotation drift movement of the Siberia plate. World Regional Studies (in Chinese), 1994, (1): 67-71.
[41]  Northrup C, Royden L. Motion of the Pacific plate relative to Eurasia and its relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 1995, 23(8): 719-722.
[42]  侯贵廷, 钱祥麟, 宋新民. 渤海湾盆地形成机制研究. 北京大学学报(自然科学版), 1998, 34(4): 503-509. Hou G T, Qian X L, Song X M. The origin of the Bohai Bay Basin. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 1998, 34(4): 503-509.
[43]  侯贵廷, 钱祥麟, 蔡东升. 渤海湾盆地中、新生代构造演化研究. 北京大学学报(自然科学版), 2001, 37(6): 845-851. Hou G T, Qian X L, Cai D S. The tectonic evolution of Bohai basin in Mesozoic and Cenozoic time. Acta Scientiarum Naturalium Universitis Pekinesis (in Chinese), 2001, 37(6): 845-851.
[44]  李三忠, 索艳慧, 戴黎明等. 渤海湾盆地形成与华北克拉通破坏. 地学前缘, 2010, 17(4): 64-89. Li S Z, Suo Y H, Dai L M, et al. Development of the Bohai Bay basin and destruction of the North China Craton. Earth Science Frontiers (in Chinese), 2010, 17(4): 64-89.
[45]  Wdrrall D M, Kruglyak V, Kunst F, et al. Tertiary tectonics of the sea of Okhotsk, Russia: Far-field effects of the India-Eurasia collision. Tectonics, 1996, 15(4): 813-826.
[46]  杨纪林. 试论中国内陆板块运动演化及与地震的关系. 内陆地震, 2011, 25(2): 109-119. Yang J L. Discussion on intraland plate moving evolvement in China and the relationship with earthquake. Inland Earthquake (in Chinese), 2011, 25(2): 109-119.
[47]  Lee W H K. On the global variations of terrestrial heat-flow. Phys. Earth Planet. Interiors, 1969, 2(5): 332-341.
[48]  Pollack H N, Chapman D S. On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics, 1977, 38(3-4): 279-296.
[49]  Kukkonen I T, Rath V, Kiveks L, et al. Geothermal studies of the Outokumpu deep drill hole, Finland: Vertical variation in heat flow and palaeoclimatic implications. Physics of the Earth and Planetary Interiors, 2011, 188(1-2): 9-25.
[50]  Duchkov A D, Rychkova K M, Lebedev V I, et al. Estimation of heat flow in Tuva from data on helium isotopes in thermal mineral springs. Russian Geology and Geophysics, 2010, 51(2): 209-219.
[51]  中国科学院地质研究所地热组. 华北平原及其邻近地区大地热流资料报道与讨论. 地质科学, 1979, 1(1): 1-12. Geothemal Research Croup, Institute of Geology, Academia Sinica. Report on the data of terrestrial heat flow in north China plain and adjacent regions and its study. Chinese Journal of Geology (in Chinese), 1979, 1(1): 1-12.
[52]  汪集旸, 黄少鹏. 中国大陆地区大地热流数据汇编. 地质科学, 1988, (2): 196-204. Wang J Y, Huang S P. Compilation of heat flow data for continental area of China. Chinese Journal of Geology (in Chinese), 1988, (2): 196-204.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133