全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

柴达木—祁连山地块内部震间上地壳块体运动特征与变形模式研究

DOI: 10.6038/cjg20130913, PP. 2994-3010

Keywords: 柴达木—祁连山地块,应变率场,震间上地壳运动块体模型,变形模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

以青藏高原北缘及东北缘的柴达木—祁连山地块内的活动断裂、由断裂所围限的微小块体为研究对象,系统收集整理区内活动断裂定量参数和GPS速度场等资料,使用球面应变率计算方法分析研究区内GPS速度场得到现今构造应变率场,讨论区内最大剪应变率、面膨胀率与旋转率等参数与区域构造变形之间的关系;同时,依据区内详实的活动断裂资料建立精细的微小活动块体模型,利用Backslip模型反演断裂所围限的各个块体边界断裂的滑动速率、块体内部统一应变率及块体欧拉运动学参数等,并与活动构造方法获得的滑动速率做对比;最后,讨论研究区内由GPS速度场所揭示的地壳运动变形模式.结果表明:(1)柴达木—祁连山地区地壳运动,在沿着山脉走向上具有带状区域分块运动特征,大范围内具有弥散变形特征;(2)青藏高原北部变形场应是通过不同断裂差异性相对运动、区域内部逆冲挤压和块体旋转共同作用的结果.从鄂拉山到古浪民勤一带具有强烈的逆冲活动,其两侧地壳块体分别具有逆向旋转的运动性质;(3)在研究区东部GPS速度场所呈现顺时针旋转的形态,应是处于不同地块边界处的中下地壳与地幔介质差异驱动机制对上地壳块体所产生的作用,并以近地表断层应变率积累形式表现的结果,是祁连山地块、阿拉善块体、鄂尔多斯地块等大型块体推挤旋转影响下的复杂运动学形态.

References

[1]  Wang E Q, Burchfiel B C. Late Cenozoic right-lateral movement along the Wenquan fault and associated deformation: Implications for the kinematic history of the Qaidam Basin, northeastern Tibetan Plateau. International Geology Review, 2004, 46(10): 861-879, doi:10.2747/0020-6814.46.10.861.
[2]  Yuan D Y, Champagnac J D, Ge W P, et al. Late Quaternary right-lateral slip rates of faults adjacent to the lake Qinghai, northeastern margin of the Tibetan Plateau. GSA Bulletin, 2011, 123(9-10): 2016-2030, doi:10.1130/B30315.1.
[3]  Tapponnier P, Xu Z Q, Roger F, et al. Geology-stepwise rise and growth of the Tibet plateau. Science, 2001, 294(5547): 1671-1677.
[4]  Mériaux A S, Tapponnier P, Ryerson F J, et al. The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate. Journal of Geophysical Research, 2005, 110(B4), B04404, doi: 10.1029/2004JB003210.
[5]  Zhang P Z, Molnar P, Xu X W. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. Tectonics, 2007, 26(5), TC5010, dsoi:10.1029/2006TC002014.
[6]  Peltzer G, Tapponnier P,Armijo R. Magnitude of Late quaternary left-lateral displacements along the North edge of Tibet. Journal of Geophysical Research, 1988, 93(B12): 15085-15117.
[7]  Meyer B, Tapponnier P, Gaudemer Y, et al. Rate of left-lateral movement along the easternmost segment of the Altyn Tagh fault, east of 96 degrees E (China). Geophysical Journal International, 1996, 124(1): 29-44.
[8]  袁道阳, 张培震, 刘百篪等. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换. 地质学报, 2004, 78(2): 270-278. Yuan D Y, Zhang P Z, Liu B C, et al. Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau. Acta Geologica Sinica (in Chinese), 2004, 78(2): 270-278.
[9]  Zhang P Z, Burchfiel B C, Molnar P, et al. Amount and style of Late Cenozoic Deformation in the Liupan Shan Area, Ningxia Autonomous Region, China. Tectonics, 10(6): 1111-1129, doi:10.1029/90TC02686.
[10]  Burchfiel B C, Peizhen Z, Wang Y P, et al. Geology of the Haiyuan fault Zone, Ningxia-Hui Autonomous Region, China, and its Relation to the Evolution of the Northeastern Margin of the Tibetan Plateau. Tectonics, 1991, 10(6): 1091-1110, doi:10.1029/90TC02685.
[11]  Lasserre C, Morel P H, Gaudemer Y, et al. Post-glacial left slip-rate and past occurrence of M>8 earthquakes on the western Haiyuan fault, Gansu, China. Journal of Geophysical Research, 1999, 104(B8): 17633-17651.
[12]  袁道阳, 刘百篪, 吕太乙等. 北祁连山东段活动断裂带的分段性研究. 西北地震学报, 1998, 20(4): 27-34. Yuan D Y, Liu B C, Lü T Y, et al. Study on the segmentation in east segment of the northern Qilianshan Fault zone. Northwestern Seismological Journal (in Chinese), 1998, 20(4): 27-34.
[13]  Gahalaut V K, Chander R. Evidence for an earthquake cycle in NW Outer Himalaya near 78E longitude from precision levelling. Geophysical Research Letters, 1997, 24(3): 225-228.
[14]  Gahalaut V K, Chander R. On interseismic elevation changes observed near 75. 5 E longitude in the NW Himalaya. Bulletin of the Seismological Society of America, 1999, 89(3): 837-843.
[15]  Savage J C, Svarc J L, Prescott W H, et al. Deformation across the forearc of the Cascadia subduction zone at Cape Blanco, Oregon. Journal of Geophysical Research, 2000, 105(B2): 3095-3102.
[16]  程佳, 徐锡伟, 甘卫军等. 青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源. 地球物理学报,2012, 55(4): 1198-1212, doi:10.6038/j.issn.0001-5733.2012.04.016. Cheng J, Xu X W, Gan W J, et al. Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan Plateau. Chinese J. Geophys. (in Chinese), 2012, 55(4): 1198-1212, doi:10.6038/j.issn.0001-5733.2012.04.016.
[17]  孙知明, 李海兵, 裴军令等. 阿尔金断裂走滑作用对青藏高原东北缘山脉形成的古地磁证据. 岩石学报, 2012, 28(6): 1928-1936. Sun Z M, Li H B, Pei J L, et al. Strike-slip movement of the Altyn Tagh fault and implications for mountain formation inferred from paleomagnetic data in northeastern Tibetan Plateau. Acta Petrologica Sinica, 2012, 28(6): 1928-1936.
[18]  刘百箎, 周俊喜, 李秦梅等. 1718年通渭地震和1654年天水地震地区航空照片判读. 地震科学研究, 1984, (1): 1-7. Liu B C, Zhou J X, Li Q M, et al. Interpretation of air photographs of 1718 Tongwei Earthquake and 1654 Tianshui Earthquake. Journal of Seismological Research (in Chinese), 1984, (1): 1-7.
[19]  肖根如. GPS地壳形变观测及其在中亚大三角地震构造域的应用. 北京: 中国地震局地质研究所, 2011. Xiao G R. GPS Crustal Deformation Observation and Its Application in the Great Triangular Seismic tectonic Region of Central Asia (in Chinese). Beijing: Institute of Geology, China Earthquake Administration, 2011.
[20]  王敏, 沈正康, 牛之俊等. 现今中国大陆地壳运动与活动块体模型. 中国科学(D 辑), 2003, 33(增刊): 21-32. Wang M, Shen Z K, Niu Z J, et al. Present-day crustal movement of continental China and active tectonic block model. Sciences in China (Ser D) (in Chinese), 2003, 33(Suppl): 21-32.
[21]  梅秀苹, 邵志刚, 张浪平等. 南北地震带北段强震破裂空段的地震危险性研究. 地震学报, 2012, 34(4): 509-525. Mei X P, Shao Z G, Zhang L P, et al. Study on potential earthquake risk of unbroken active faults in the northern segment of the North-South seismic zone. Acta Seismologica Sinica (in Chinese), 2012, 34(4): 509-525.
[22]  丁国瑜. 活动亚板块、构造块体相对运动 // 丁国瑜 编. 中国岩石圈动力学概论. 北京: 地震出版社, 1997: 142-153. Ding G Y. Active sub-plate, tectonic block and their kinematics // Ding G Y ed. Introduction to Lithospheric Dynamics of China (in Chinese). Beijing: Seismological Press, 1997: 1422-153.
[23]  张培震, 王琪, 马宗晋. 青藏高原现今构造变形特征与GPS 速度场. 地学前缘, 2002,9(2): 442-450. Zhang P Z, Wang Q, Ma Z J. GPS velocity field and active crustal deformation in and around the Qinghai-Tibet Plateau. Earth Science Frontier (in Chinese), 2002,9(2): 442-450.
[24]  Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 1982, 10(12): 611-616.
[25]  Clark M K, Royden L H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 2000, 28(8): 703-706.
[26]  Wang Q, Zhang P Z, Freymueller J T, et al. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 2001, 294(5542): 574-577.
[27]  Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 2004, 32(9): 809-812.
[28]  Gan W J, Zhang P Z, Shen Z K, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research-Solid Earth, 2007, 112(B8), doi:10.1029/2005JB004120.
[29]  Thatcher W. Microplate model for the present-day deformation of Tibet. Journal of Geophysical Research, 2007, 112, B01401, doi:10.1029/2005JB004244.
[30]  Shen Z K, Lü J N, Wang M, et al. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research, 2005, 110(B11), B11409, doi:10.1029/2004JB003421.
[31]  Duvall A R, Clark M K. Dissipation of fast strike-slip faulting within and beyond northeastern Tibet. Geology, 2010, 38(3): 223-226, doi:10.1130/G30711.1.
[32]  Loveless J P, Meade B J. Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations. Earth and Planetary Science Letters, 2011, 303(1-2): 11-24, doi:10.1016/j.epsl.2010.12.014.
[33]  郑文俊, 张培震, 袁道阳等. GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形. 地球物理学报, 2009, 52(10): 2491-2508, doi:10.3969/j.issn.0001-5733.2009.10.008. Zheng W J, Zhang P Z, Yuan D Y, et al. Deformation on the northern of the Tibetan plateau from GPS measurement and geologic rates of Late Quaternary along the major fault. Chinese J. Geophys. (in Chinese), 2009, 52(10): 2491-2508, doi:10.3969/j.issn.0001-5733.2009.10.008.
[34]  Bendick R, Bilham R, Freymueller J, et al. Geodetic evidence for a low slip rate in the Altyn Tagh fault system. Nature, 2000, 404(6773): 69-72.
[35]  国家地震局阿尔金活动断裂带课题组. 阿尔金活动断裂带. 北京: 地震出版社, 1992: 1-165. The Group of the Altyn Tagh Acitve Fualt System. CEA the Altyn Tagh Active Fault System (in Chinese). Beijing: Seismological Press, 1992: 1-165.
[36]  邓起东, 张培震, 冉勇康等. 中国活动构造基本特征. 中国科学(D), 2002, 32(12): 1020-1030. Deng Q D, Zhang P Z, Ran Y K, et al. Basic characteristics of active tectonics of China. Science in China (Series D), 2003, 46(4): 356-372.
[37]  Molnar P, Tapponnier P. Cenozoic tectonics of Asia: effects of a continental collision-features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 1975, 189(4201): 419-426.
[38]  Tapponnier P, Molnar P. Slip-line field theory and large-scale continental tectonics. Nature, 1976, 264(5584): 319-324.
[39]  England P C, dan McKenzie P. A thin viscous sheet model for continental deformation. Geophysical Journal International, 1983, 73(2): 523-532.
[40]  England P C, Houseman G. Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions. Nature, 1985, 315(6017): 297-301.
[41]  England P, Houseman G. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. Journal of Geophysical Research-Solid Earth and Planets, 1986, 91(B3): 3664-3676.
[42]  Houseman G, England P. Finite strain calculations of continental deformation. 1. Method and general results for convergent zones. Journal of Geophysical Research-Solid Earth and Planets, 1986, 91(B3): 3651-3663.
[43]  Bird P. Lateral extrusion of lower crust from under high topography in the Isostatic Limit. Journal of Geophysical Research-Solid Earth and Planets, 1991, 96(B6): 10275-10286.
[44]  Royden L H, Burchfiel B C, King R W, et al. Surface deformation and lower crustal flow in eastern Tibet. Science, 1997, 276(5313): 788-790.
[45]  Meade B J. Present-day kinematics at the India-Asia collision zone. Geology, 2007, 35(1): 81-84.
[46]  Zheng W J, Zhang P Z, He W G, et al. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults. Tectonophysics, 2012, 584: 267-280, doi:10.1016/j.tecto.2012.01.006.
[47]  Molnar P, Burchfiel B C, Zhao Z Y, et al. Geologic evolution of Northern Tibet: results of an expedition to Ulugh Muztagh. Science, 1987, 235(4786): 299-236.
[48]  Tapponnier P, Meyer B, Avouac J P, et al. Active thrusting and folding in the Qilian-Shan, and decoupling between upper crust and mantle in northeastern Tibet. Earth and Planetary Science Letters, 1990, 97(3-4): 382-403.
[49]  Avouac J P, Tapponnier P. Kinematic model of active deformation in central Asia. Geophysical Research Letters, 1993, 20(10): 895-898.
[50]  Savage J C. Interseismic uplift at the Nankai subduction zone, southwest Japan 1951—1990. Journal of Geophysical Research, 1995, 100(B4): 6339-6350.
[51]  McCaffrey R. Crustal block rotations and plate coupling // Stein S, Freymueller J T eds. Plate Boundary Zones: Geodynamics Series, 30. American Geophysical Union, 2002: 101-122. doi:10.1029/030GD06.
[52]  McCaffrey R. Block kinematics of the Pacific-North America plate boundary in the southwestern US from inversion of GPS, seismological, and geologic data. Journal of Geophysical Research, 2005, 110(B7), B07401, doi:10.1029/2004JB003307, 2005.
[53]  McCaffrey R, Qamar A I, King R W, et al. Plate locking, block rotation and crustal deformation in the Pacific Northwest. Geophysical Journal International, 2007, 169: 1315-1340, doi:10.1111/j.1365-246X.2007.03371.x.
[54]  Okada Y. Surface deformation due to shear and tensile faults in a half space. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154.
[55]  Okada Y. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040.
[56]  Savage J C, Burford R O. Geodetic determination of relative plate motion in central California. Journal of Geophysical Research, 1973, 78(5): 832-845.
[57]  Hetzel R. Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides. Tectonophysics, 2012, 582: 1-24.
[58]  张培震, 邓起东, 张国民等. 中国大陆的强震活动与活动地块. 中国科学D辑: 地球科学, 2003, 33(S1): 12-20. Zhang P Z, Deng Q D, Zhang G M, et al. Active tectonic blocks and strong earthquakes in the continent of China. Science in China (Ser. D), 2003, 46(S2): 13-24.
[59]  Levitt D A, Sandwell D T. Seismic tomography of northern Tibet and Kunlun: Evidence for crustal blocks and mantle velocity contrasts. Earth and Planetary Science Letters, 1996, 139(1-2): 263-279.
[60]  Wittlinger G, Tapponnier P, Poupinet G, et al. Tomographic evidence for localized lithospheric shear along the Altyn Tagh fault. Science, 1998, 282(5386): 74-76.
[61]  Chen W P, Chen C Y, Nábelek J L. Present-day deformation of the Qaidam basin with implications for intra-continental tectonics. Tectonophysics, 1999, 305(1-3): 165-181.
[62]  郑文俊. 河西走廊及其邻区活动构造图像及构造变形模式 北京: 中国地震局地质研究所, 2009. Zheng W J. Geometric pattern and active tectonics of the Hexi Corridor and its adjacent regions (in Chinese). Beijing: Institute of Geology, China Earthquake Administration, 2009.
[63]  Peltzer G, Tapponnier P. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: an experimental approach. Journal of Geophysical Research, 1988, 93(B12): 15085-15117.
[64]  Meriaux A S, Ryerson F J, Tapponnier P, et al. Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh. Journal of Geophysical Research-Solid Earth, 2004, 109(B6), doi:10.1029/2003JB002558.
[65]  Van Der Woerd J, Tapponnier P, Ryerson F J, et al. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from Al-26, Be-10, and C-14 dating of riser offsets, and climatic origin of the regional morphology. Geophysical Journal International, 2002, 148(3): 356-388.
[66]  Meyer B, Tapponnier P, Bourjot L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International, 1998, 135(1): 1-47.
[67]  徐锡伟, Tapponnier P, van der Worerd J等. 阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论. 中国科学(D), 2003, 33(10): 967-974. Xu X W, Tapponnier P, van der Woerd J, et al. Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model. Science in China Series D: Earth Sciences, 2005, 48(3): 384-397.
[68]  Gaudemer Y, Tapponnier P, Meyer B, et al. Partitioning of crustal slip between linked, active faults in the Eastern Qilian Shan, and evidence for a major seismic gap, the Tianzhu gap, on the Western Haiyuan Fault, Gansu (China). Geophysical Journal International, 1995, 120(3): 599-645.
[69]  何文贵, 刘百篪, 袁道阳等. 冷龙岭活动断裂的滑动速率研究. 西北地震学报, 2000, 22(1): 90-97. He W G, Liu B C, Yuan D Y, et al. Research on slip rates of the Lenglongling active fault zone. Northwestern Seismological Journal (in Chinese), 2000, 22(1): 90-97.
[70]  Li C Y, Zhang P Z, Yin J H, et al. Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau. Tectonics, 2009, 28(5), TC5010, doi:10.1029/2008TC002302.
[71]  刘百篪, 曹娟娟, 袁道阳等. 青藏高原北部活动地块内部的活断层定量资料. 地震地质, 2008, 30(1): 161-175. Liu B C, Cao J J, Yuan D Y, et al. Quantitative data of active faults within the active tectonic block in North Qinghai-Xizang Plateau. Seismology and Geology, 2008, 30(1): 161-175.
[72]  Tape C, Musé P, Simons M, et al. Multiscale estimation of GPS velocity fields. Geophysical Journal International, 2009, 179(2): 945-971. doi:10.1111/j.1365-246X.2009.04337.x.
[73]  Shen Z K, Jackson D D, Ge B X, et al. Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. Journal of Geophysical Research, 1996, 101(B12): 27957-27980.
[74]  Savage J C, Gan W J, Svarc J L. Strain accumulation and rotation in the Eastern California Shear Zone. Journal of Geophysical Research, 2001, 106(B10): 21995-22071.
[75]  石耀霖, 朱守彪. 用GPS位移资料计算应变方法的讨论. 大地测量与地球动力学, 2006, 26(1): 1-8. Shi Y L, Zhu S B. Discussion on method of calculating strain with GPS displacement data. Journal of Geodesy and Geodynamics (in Chinese), 2006, 26(1): 1-8.
[76]  武艳强, 江在森, 杨国华等. 利用最小二乘配置在球面上整体解算GPS应变场的方法及应用. 地球物理学报, 2009, 52(7): 1707-1714, doi: 10.3969/j.issn.0001-5733.2009.07.005. Wu Y Q, Jiang Z S, Yang G H, et al. The application and method of GPS strain calculation in whole mode using least square collocation in sphere surface. Chinese J. Geophys. (in Chinese), 2009, 52(7): 1707-1714, doi:10.3969/j.issn.0001-5733.2009.07.005.
[77]  England P, Molnar P. Late Quaternary to decadal velocity fields in Asia. Journal of Geophysical Research, 2005, 110(B12), B12401. doi:10.1029/2004JB003541.
[78]  Matsu''ura M, Jackson D D, Cheng A. Dislocation model for aseismic crustal deformation at hollister, California. Journal of Geophysical Research, 1986, 91(B12): 12661-12674, doi:10.1029/JB091iB12p12661.
[79]  Matsu''ura M, Sato T. A dislocation model for the earthquake cycle at convergent plate boundaries. Geophysical Journal International, 1989, 96(1): 23-32, doi:10.1111/j. 1365-246X.1989.tb05247.x.
[80]  沈正康, 王敏, 甘卫军等. 中国大陆现今构造应变率场及其动力学成因研究. 地学前缘, 2003, 10(S1): 93-100. Shen Z K, Wang M, Gan W J, et al. Contemporary tectonic strain rate field of Chinese continent and its geodynamic implications. Earth Science Frontiers (in Chinese), 10(S1): 93-100.
[81]  Savage J C. A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research, 1983, 88(B6): 4984-4996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133