全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

煤层气储层含气量与其弹性参数之间的关系——思考与初探

DOI: 10.6038/cjg20130832, PP. 2837-2848

Keywords: 煤层气,含气量,弹性参数,负相关关系,AVO

Full-Text   Cite this paper   Add to My Lib

Abstract:

首先研究了天然气AVO技术的岩石物理基础——Gassmann方程和Biot理论(以下统称为"Gassmann-Biot理论")——对煤层气AVO技术的适用性.根据该理论创始人在建立其理论时的假设条件、煤层气储层的双相孔隙特征、煤层气的双相赋存特征,本文推理认为,由于煤层气储层的基质型孔隙体系的连通性差,裂隙性孔隙在宏观上是非均质的,并且是各向异性的,因此,总体上来说,Gassmann-Biot理论不完全适用于煤层气储层.特别地,当煤层的水饱和状态保持不变而煤层的含气量变化时,因为煤层中孔(裂)隙中流体的体积压缩模量不变或基本不变,即使煤层的弹性参数发生变化,Gassmann-Biot理论也不可能预测其变化趋势.因此,天然气AVO技术的岩石物理基础完全地不适用于水饱和煤层气储层.研究发现,煤层气储层含气量与其密度、纵波速度、横波速度之间存在负相关关系,即含气量高,密度小、纵波速度小、横波速度小;含气量低,密度大、纵波速度大、横波速度大.但是,这些负相关关系不是现有岩石物理理论能够预测或能够解释的.依据煤层气地质学理论以及负相关关系与现有岩石物理理论的一致性,本文提供了对某勘探区A号煤层含气量与其密度、纵波速度、横波速度之间负相关关系的解释,并认为煤层气储层的含气量与其弹性参数之间的负相关关系可能是这类储层内在的固有的规律性的关系.本文证明含气量与其密度、纵波速度、横波速度之间负相关关系可以作为煤层气AVO技术的岩石物理基础,建立了AVO异常与煤层气储层"甜点(即富集高渗部位)"之间的关系,从而能够使用AVO异常探测煤层气富集高渗部位.

References

[1]  Gassmann F. Elastic waves through a packing of spheres. Geophysics, 1951, 16(4): 637-685.
[2]  Boit M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: II. High-frequency range. Journal of the Acoustic Society of America, 1956, 28(2): 179-191.
[3]  陈信平, 刘素红. 浅谈Gassmann方程. 中国海上油气(地质), 1996, 10(2): 122-127. Chen X P, Liu X H. An preliminary introduction to Gassmann equation. China Offshore Oil and Gas(Geology) (in Chinese), 1996, 10(2): 122-127.
[4]  Wang Z J. The gassmann equation revisited: Comparing laboratory data with Gassmann''s prediction.//Wang Z J, Nur A eds. Seismic and Acoustic Velocities in Reservoir Rocks, Vol. 3, Recent Developments. SEG Press, 2000.
[5]  Shuey R T. A simplification of the Zoeppritz equations. Geophysics, 1985, 50(4): 609-614.
[6]  尹军杰, 邢春颖. 煤层气地震勘探关键技术问题浅析.//煤层气储层与开发工程研究进展(下). 徐州: 中国矿业大学出版社, 2009. Yin J J, Xing C Y. On the key technologies of coalbed methane exploration and development.//Research Development of Coalbed Methane Reservoirs and Development. Xuzhou: China University of Mining and Technology Press (in Chinese), 2009.
[7]  Ramos A C B, Davis T L. 3-D AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs. Geophysics, 1997, 62(6): 1683-1695.
[8]  Gregory A R. Fluid saturation effects on dynamic elastic properties of sedimentary rocks. Geophysics, 1976, 41(5): 895-921.
[9]  Yao Q L, Han D H. Acoustic properties of coal from lab measurement. SEG Annual Meeting, 2008.
[10]  陈信平. 一种直接探测地下石油、天然气和煤层气的方法. 中国专利申请号: 200510131966.X. Chen X P. A method for directly detecting underground oil, gas and coalbed methane (in Chinese). China Patent Application No. 200510131966. X.
[11]  Gardner G H F, Gardner L W, Gregory, A R. Formation velocity and density-the diagnostic basics for stratigraphic traps. Geophysics, 1974, 39(6): 770-780.
[12]  彭苏萍等. 矿井瓦斯富集部位地震探测技术与方法研究(内部报告). 北京: 中国矿业大学, 2004. Peng S P, et al. A research on the seismic technology and methods for detecting locally-rich gases within coal mines. Internal Report. Beijing: China University of Mining and Technology (in Chinese), 2004.
[13]  Castagna J P, Batzle M L, Eastwood R L. Relationships between compressional-wave and shear-wave velocities in elastic silicate rocks. Geophysics, 1985, 50(4): 571-581.
[14]  Steidl P F. Coal as a Reservoir.//A Guide To Coalbed Methane Reservoir Engineering. Gas Research Institute Reference No. GRI-94/0397, 1996.
[15]  苏现波, 陈江峰, 孙俊民等. 煤层气地质学与勘探开发. 北京: 科学出版社, 2000. Su X B, Chen J F, Sun J M, et al. Geology and E & D of Coalbed Methane. Beijing: Science Press (in Chinese), 2000.
[16]  Peng S P, Chen H J, Yang R Z, et al. Factors facilitating or limiting the use of AVO for coal-bed methane. Geophysics, 2006, 71(4): C49-C56.
[17]  Ma J F, Morozov I, Cheng J Y. AVO attributes of a deep coal seam. CSPG CSEG CWLS Convention, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133