全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

南海北部神狐海域天然气水合物分解的测井异常

DOI: 10.6038/cjg20130828, PP. 2799-2807

Keywords: 天然气水合物,饱和度,分解,纵波速度,神狐海域

Full-Text   Cite this paper   Add to My Lib

Abstract:

南海北部神狐海域GMGS-1钻探揭示SH3井天然气水合物位于稳定带上部,厚度约为10m.氯离子异常计算的水合物饱和度最高达26%,高水合物饱和度层出现高电阻率和低纵波速度.为分析该低纵波速度异常,本文基于简化的三相介质理论计算了饱和水纵波速度,在深度195m附近,测量的纵波速度小于饱和水纵波速度.利用阿尔奇公式,基于原位温度、盐度、密度孔隙度和测量的电阻率,利用交会分析确定了该井的阿尔奇常数为a=1.1和m=2.3.基于该参数,利用阿尔奇方程计算的水合物饱和度占孔隙空间5%~20%,局部地层水合物饱和度达26.8%,在垂向上分布不均匀.由于钻探可能导致水合物发生分解而产生游离气,原位游离气和水合物分解产生的气体都能造成低纵波速度异常.由于地震资料采集在测井之前完成,利用不同速度制作合成地震记录并与地震资料进行对比,能够确定水合物稳定带上部的低速异常形成原因.

References

[1]  Collett T S, Knapp C C, Johnson A H, et al. Natural gas hydrate: A review. AAPG memoir 89, 2009: 146-219.
[2]  Park K P, Bahk J J, Kwon Y, et al. Korean national program expedition confirm rich gas hydrate deposits in the Ulleung Basin, East Sea. DOE-National Energy Technology Laboratory (NETL) Fire in the Ice Methane Hydrate Newsletter, 2008: 6-9.
[3]  Riedel M, Collett T S, Malone M J, et al. Cascadia margin gas hydrates. Proceedings of the Integrated Ocean Drilling Program 311, 2005: 1-135.
[4]  Zhang H Q, Yang S X, Wu N Y, et al. Successful and surprising results for China''s first gas hydrate drilling expedition. Fire in the Ice Methane Hydrate Newsletter, National Energy Technology Laboratory, US Department of Energy, 2007: 6-9.
[5]  Domenico S N. Elastic properties of unconsolidated porous sand reservoirs. Geophysics, 1977, 42(7): 1339-1368.
[6]  Pride S R, Berryman J G, Harris J M. Seismic attenuation due to wave-induced flow. J. Geophys. Res., 2004, 109(B1): B01201.
[7]  Mindlin R D. Compliance of elastic bodies in contact. Journal of Applied Mechanics, 1949, 16: 259-268.
[8]  陈芳,周洋,苏新等. 南海神狐海域含水合物层粒度变化及与水合物饱和度的关系.海洋地质与第四纪地质,2011,31(5): 95-100. Chen F, Zhou Y, Su X, et al. Gas hydrate saturation and its relation with grain size of the hydrate-bearing sediments in the Shenhu area of northern South China Sea. Marine Geology & Quaternary Geology (in Chinese), 2011,31(5): 95-100.
[9]  Lee M W. Models for gas hydrate-bearing sediments inferred from hydraulic permeability and elastic velocities. U. S. Geological Survey Scientific Investigations Report 5219, 2008: 1-15.
[10]  Lee M W. Proposed moduli of dry rock and their application to predicting elastic velocities of sandstones. U. S. Geological Survey Scientific Investigations Report 2005-5119, 2005: 1-14.
[11]  Arp J J. The effect of temperature on the density and electrical resistivity of sodium chloride solutions. Journal of Petroleum Technology, 1953, 5(10): 17-20.
[12]  Guérin G, Goldberg D, Meltser A. Characterization of in situ elastic properties of gas hydrate-bearing sediments on the Blake Ridge. J. Geophys. Res., 1999, 104(B8): 17781-17795.
[13]  Wu N Y, Yang S X, Zhang H Q, et al. Gas hydrate system of Shenhu area, northern South China Sea: Wire-line logging, geochemistrical results and preliminary resources estimates. OCT, 2010, 20485, 1-13.
[14]  Hyndman R D, Spence G D. A seismic study of methane hydrate marine bottom simulating reflectors. J. Geophys. Res., 1992, 97(B5): 6683-6698.
[15]  Minshull T A, Singh S C, Westbrook G K. Seismic velocity structure at a gas hydrate reflector, offshore western Colombia, from full waveform inversion. J. Geophys. Res., 1994, 99(B3): 4715-4734.
[16]  陆红锋, 陈弘, 陈芳等. 南海神狐海域天然气水合物钻孔沉积物矿物学特征. 南海地质研究, 2009, 20: 28-37. Lu H F, Chen H, Chen F, et al. Mineralogy of the sediments from gas-hydrate drilling sites, Shenhu area, South China Sea. Geological Research of South China Sea (in Chinese), 2009, 20: 28-37.
[17]  Wang X J, Lee M, Wu S G, et al. Identification of gas hydrate dissociation from wireline logs data in the Shenhu area, South China Sea. Geophysics, 2012, 77(3): 125-134.
[18]  Heeschen K U, Tréhu A M, Collier R W, et al. Distribution and height of methane bubble plumes on the Cascadia margin characterized by acoustic imaging. Geophys. Res. Lett., 2003, 30(12): 1643-1646.
[19]  Gorman A R, Holbrook W S, Hornbach M J, et al. Migration of methane gas through the hydrate stability zone in a low-flux hydrate province. Geology, 2002, 30(4): 327-330.
[20]  龚建明, 何玉华, 闫贵京等. 南海"神狐型"BSR特征及影响因素. 石油实验地质, 2011, 33(6): 602-606. Gong J M, He Y H, Yan G J, et al. Features and controlling factors of BSR in Shenhu area, South China Sea. Petroleum Geology & Experiment (in Chinese), 2011, 33(6): 602-606.
[21]  Tréhu A M, Ruppel C, Holland M, et al. Gas hydrates in marine sediments: Lessons from scientific ocean drilling. Oceanography, 2006, 19(4): 124-142.
[22]  Cook A E, Goldberg D. Extent of gas hydrate filled fracture planes: Implications for in situ methanogenesis and resource potential. Geophys. Res. Lett., 2008, 35: L15302.
[23]  吴能友, 杨胜雄, 王宏斌等. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系. 地球物理学报, 2009, 52(6): 1641-1650. Wu N Y, Yang S X, Wang H B, et al. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, Northern South China Sea. Chinese J. Geophys. (in Chinese), 2009, 52(6): 1641-1650.
[24]  陆敬安, 杨胜雄, 吴能友等. 南海神狐海域天然气水合物地球物理测井评价. 现代地质, 2008, 22(3): 447-451. Lu J A, Yang S X, Wu N Y, et al. Well logging evaluation of gas hydrates in Shenhu area, South China Sea. Geoscience (in Chinese), 2008, 22(3): 447-451.
[25]  王秀娟, 吴时国, 刘学伟等. 基于测井和地震资料的神狐海域天然气水合物资源量估算. 地球物理学进展, 2010, 25(4): 1288-1297. Wang X J, Wu S G, Liu X W, et al. Estimation of gas hydrates resources based on well log data and seismic data in Shenhu area. Progress in Geophysics (in Chinese), 2010, 25(4): 1288-1297.
[26]  梁劲, 王明君, 陆敬安等. 南海神狐海域含水合物地层测井响应特征. 现代地质, 2010, 24(3): 506-514. Liang J, Wang M J, Lu J A, et al. Logging response characteristics of gas hydrate formation in Shenhu area of the South China Sea. Geoscience (in Chinese), 2010, 24(3): 506-514.
[27]  Wang X J, Hutchinson D R, Wu S G, et al. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea. J. Geophys. Res., 2011, 116: B05102.
[28]  Dvorkin J, Prasad M, Sakai A, et al. Elasticity of marine sediments: Rock physics modeling. Geophys. Res. Lett., 1999, 26(12): 1781-1784.
[29]  Helgerud M B, Dvorkin J, Nur A, et al. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophys. Res. Lett., 1999, 26(13): 2021-2024.
[30]  Lee M W. Amount of gas hydrate estimated from compressional and shear-wave velocities at the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. Bull. Geol. Surv. Can., 1999, 544: 313-322.
[31]  Carcione J M, Tinivella U. Bottom-simulating reflectors: seismic velocities and AVO based on laboratory, well and seismic data. Geophys. Prosp., 2000, 49(3): 523-539.
[32]  Carcione J M, Gei D. Gas-hydrate concentration estimated from P- and S-wave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada. J. Appl. Geophys., 2004, 56(1): 73-78.
[33]  Lee M W, Waite W F. Estimating pore-space gas hydrate saturations from well log acoustic data. Geochem. Geophys. Geosyst., 2008, 9(7): Q07008.
[34]  Yun T S, Francisca F M, Santamarina J C, et al. Compressional and shear wave velocities in uncemented sediment containing gas hydrate. Geophys. Res. Lett., 2005, 32(10): L10609.
[35]  Yun T S, Santamarina J C, Ruppel C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. J. Geophys. Res., 2007, 112(B4): B04106.
[36]  Kleinberg R L, Flaum C, Collett T S. Magnetic resonance log of JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well: Gas hydrate saturation, growth habit, and relative permeability.//Dallimore S R, Collett T S eds. Scientific Results from the Mallik2002 Gas Hydrate Production Research Well Program, Makenzie Delta, North west Territories, Canada. Bull. Geol. Surv. Can., 2005, 585: 1-10.
[37]  Leclaire P, Cohen-Ténoudji F, Aguirre-Puente J. Extension of Biot''s theory of wave propagation to frozen porous media. J. Acoust. Soc. Am., 1994, 96(6): 3753-3768.
[38]  Briaud J L, Chaouch A. Hydrate melting in soil around hot conductor. J. Geotech. Geoenviron. Eng., 1997, 123(7): 645-653.
[39]  Lee M W, Collett T S. Gas hydrate and free gas saturations estimated from velocity logs on Hydrate Ridge, offshore Oregon, U. S. A.//Trehu A M, Bohrmann G, Torres M E eds. Proceedings of the Ocean Drilling Program Scientific Results, 2006, 204: 1-25.
[40]  Collett T S, Lewis R E, Dallimore S R, et al. Detailed evaluation of gas hydrate reservoir properties using JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well downhole well-log displays.//Dallimore S R, Uchida T, Collett T S eds. Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada. Bull. Geol. Surv. Can., 1999, 544: 295-311.
[41]  Tinivella U. A method for estimating gas hydrate and free gas concentrations in marine sediments. Bollettino di Geofisica Teorica ed Applicata, 1999, 40(1): 19-30.
[42]  White J E. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 1975, 40(2): 224-232.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133