全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

1999年台湾集集地震震后地表变形的力学机制

DOI: 10.6038/cjg20130817, PP. 2681-2689

Keywords: 集集地震,黏性松弛,震后变形,GPS观测,LDDA方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

1999年台湾集集地震震后450天的GPS观测资料显示了几十到几百毫米的地表位移.下地壳的震后黏性松弛和断层无震蠕变产生的震后滑动是用来解释地表震后变形的两个主要机制.本文利用接触问题的黏弹性有限元(LDDA)方法,以GPS观测数据作为约束,分别考察了黏性松弛和震后滑动机制对地表震后变形的影响.计算结果表明,黏性松弛机制产生的地表位移与观测数据吻合较好,通过试错法由震后GPS观测约束得到的下地壳黏度为1017Pa·s,而上地幔黏度对计算结果影响不大.考察震后滑动机制对地表变形的影响时,在LDDA方法中结合了速率状态摩擦定律,结果显示震后滑动机制不能很好地解释震后450天的观测数据,它产生的地表变形只在震后50天内与观测大致吻合,之后位移值基本不随时间变化.这些结果有助于增进对集集地震震后变形机制的认识.

References

[1]  Yu S B, Kuo L C, Hsu Y J, et al. Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan, earthquake. Bull. Seism. Soc. Am., 2001, 91(5): 995-1012.
[2]  Deng J S, Gurnis M, Kanamori H, et al. Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake. Science, 1998, 282(5394): 1689-1692.
[3]  Shen Z K, Jackson D D, Feng Y J, et al. Postseismic deformation following the Landers earthquake, California, 28 June 1992. Bull. Seism. Soc. Am., 1994, 84(3): 780-791.
[4]  Marone C J, Scholz C H, Bilham R. On the mechanics of earthquake afterslip. J. Geophys. Res., 1991, 96(B5): 8441-8452.
[5]  Savage J C, Svarc J L. Postseismic deformation associated with the 1992 Mw7.3 Landers earthquake, southern California. J. Geophys. Res., 1997, 102(B4): 7565-7577.
[6]  Marone C. Laboratory-derived friction laws and their application to seismic faulting. Ann. Revs. Earth Plant. Sci., 1998, 26: 643-696.
[7]  Sheu S Y, Shieh C F. Viscoelastic-afterslip concurrence: a possible mechanism in the early post-seismic deformation of the Mw7.6, 1999 Chi-Chi (Taiwan) earthquake. Geophys. J. Int., 2004, 159(3): 1112-1124.
[8]  Tse S T, Rice J R. Crustal earthquake instability in relation to the depth variation of frictional slip properties. J. Geophys. Res., 1986, 91(B9): 9452-9472.
[9]  Dieterich J H. Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res., 1979, 84(B5): 2161-2168.
[10]  Fukuda J, Johnson K M, Larson K M, et al. Fault friction parameters inferred from the early stages of afterslip following the 2003 Tokachi-Oki earthquake. J. Geophys. Res., 2009, 114(B4): B04412, doi: 10.1029/2008JB006166.
[11]  Kato N, Yoshida S. A shallow strong patch model for the 2011 great Tohoku-Oki earthquake: A numerical simulation. Geophys. Res. Lett., 2011, 38(7): L00G04, doi: 10.1029/2011GL048565.
[12]  Johnson K M, Segall P, Yu S B. A viscoelastic earthquake cycle model for Taiwan. J. Geophys. Res., 2005, 110: B10404, doi: 10.1029/2004JB003516.
[13]  Yu S B, Hsu Y J, Kuo L C, et al. GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan, earthquake. J. Geophys. Res., 2003, 108, 2520, doi: 10.1029/2003JB002396.
[14]  Smith S W, Wyss M. Displacement on the San Andreas fault subsequent to the 1966 Parkfield earthquake. Bull. Seism. Soc. Am., 1968, 58(6): 1955-1973.
[15]  Bucknam R C, Plafker G, Sharp R V. Fault movement (afterslip) following the Guatemala earthquake of February 4, 1976. Geology, 1978, 6(3): 170-173.
[16]  Harsh P W. Distribution of afterslip along the imperial fault. The Imperial Valley Earthquake of October 15, 1979, US Geol. Surv. Prof. Pap., 1982, 1254: 193-203.
[17]  Sharp R V, Budding K E, Boatwright J, et al. Surface faulting along the Superstition Hills fault zone and nearby faults associated with the earthquakes of 24 November 1987. Bull. Seism. Soc. Am., 1989, 79(2): 252-281.
[18]  Wahr J, Wyss M. Interpretation of postseismic deformation with a viscoelastic relaxation model. J. Geophys. Res., 1980, 85(B11): 6471-6477.
[19]  Hsu Y J, Bechor N, Segall P, et al. Rapid afterslip following the 1999 Chi-Chi, Taiwan earthquake. Geophys. Res. Lett., 2002, 29(16): 1-4, doi: 10.1029/2002GL014967.
[20]  Hsu Y J, Bechor N, Segall P, et al. Rapid afterslip following the 1999 Chi-Chi, Taiwan earthquake. Geophys. Res. Lett., 2002, 29(16): 1-4, doi: 10.1029/2002GL014967.
[21]  Hsu Y J, Segall P, Yu S B, et al. Temporal and spatial variations of post-seismic deformation following the 1999 Chi-Chi, Taiwan earthquake. Geophys. J. Int., 2007, 169(2): 367-379.
[22]  朱守彪, 蔡永恩. 利用GPS观测的时间序列资料反演地壳地幔黏性结构. 地球物理学报, 2006, 49(3): 771-777. Zhu S B, Cai Y E. Inversion of viscous properties of crust and mantle from the GPS temporal series measurements. Chinese J. Geophys. (in Chinese), 2006, 49(3): 771-777.
[23]  Cai Y E, He T, Wang R. Numerical simulation of dynamic process of the Tangshan earthquake by a new method-LDDA. Pure Appl. Geophys., 2000, 157(11): 2083-2104.
[24]  付真. 接触问题的粘弹性LDDA方法及其在震后变形机制研究中的应用[博士论文].北京: 北京大学, 2008. Fu Z. Viscoelastic LDDA method for contact problems and its applications to studies on mechanism of postseismic deformation[Ph.D.thesis] (in Chinese). Beijing: Peking University, 2008.
[25]  Shi G H, Goodman R E. Two-dimensional discontinuous deformation analysis. Int. J. Numer. Anal. Meth. Geomech., 1985, 9(6): 541-556.
[26]  Fu Z, Cai Y E. Numerical analysis on the influence of rock specimen size on crack stress field. Acta Seismologica Sinica, 2005, 18(3): 322-330.
[27]  Ma K F, Wang J H, Zhao D P. Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan. J. Phys. Earth, 1996, 44(2): 85-105.
[28]  Shin T C, Teng T L. An overview of the 1999 Chi-Chi, Taiwan, Earthquake. Bull. Seism. Soc. Am., 2001, 91(5): 895-913.
[29]  Ruina A L. Slip instability and state variable friction laws. J. Geophys. Res., 1983, 88(B12): 10359-10370.
[30]  Zhang W B, Iwata T, Irikura K, et al. Heterogeneous distribution of the dynamic source parameters of the 1999 Chi-Chi, Taiwan, earthquake. J. Geophys. Res., 2003, 108(B5), 2232, doi: 10.1029/2002JB001889.
[31]  Blanpied M L, Lockner D A, Byerlee J D. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res., 1995, 100(B7): 13045-13064.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133