全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

地震反演成像中的Hessian算子研究

DOI: 10.6038/cjg20130728, PP. 2429-2436

Keywords: Hessian算子,全波形反演,最小二乘偏移,牛顿反演

Full-Text   Cite this paper   Add to My Lib

Abstract:

总结了牛顿类地震反演方法中Hessian算子的作用,对其在地震反演成像中的数学物理含义进行了分析.Hessian算子是误差泛函对模型参数的二阶导数,反映了误差泛函对模型变化的二次型特征.分析声波方程下的Hessian算子的格林函数表达形式,发现其表达了整个观测系统和子波频带等因素对地震数据空间到模型空间投影过程的影响.提出了两种分别适用于最小二乘偏移和全波形反演的Hessian算子简化格式.平面波Hessian算子应用于最小二乘偏移能够得到相对保真的成像结果,改善了地震偏移成像的精度.地下偏移距Hessian算子应用于全波形反演能够加快反演迭代的计算效率.最后,对Hessian算子在地震反演成像中的价值进行了讨论和评价.

References

[1]  任浩然, 王华忠, 黄光辉. 地震波反演成像方法的理论分析与对比. 岩性油气藏, 2012, 24(5): 12-18. Ren H R, Wang H Z, Huang G H. Theoretical analysis and comparison of seismic wave inversion and imaging methods. Lithologic Reservoirs (in Chinese), 2012, 24(5): 12-18.
[2]  任浩然, 王华忠, 张立彬. 沿射线路径的波动方程延拓吸收与衰减补偿方法. 石油物探, 2007, 46(6): 557-561. Ren H R, Wang H Z, Zhang L B. Compensation for absorption and attenuation using wave equation continuation along ray path. Geophysical Prospecting for Petroleum (in Chinese), 2007, 46(6): 557-561.
[3]  Plessix R E, Mulder W A. Frequency-domain finite-difference amplitude-preserving migration. Geophysics Journal International, 2004, 157(3): 975-987.
[4]  Ren H R, Wu R S, Wang H Z. Wave equation least square imaging using the local angular Hessian for amplitude correction. Geophysical Prospecting, 2011, 59(4): 651-661.
[5]  Ribodetti A, Operto S, Agudelo W, et al. Joint ray+Born least-squares migration and simulated annealing optimization for target-oriented quantitative seismic imaging. Geophysics, 2011, 76(2): R23-R42.
[6]  Pratt G, Shin C, Hicks G J. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion. Geophysical Journal International, 1998, 133(2): 341-362.
[7]  陈生昌, 曹景忠, 马在田. 稳定的Born近似叠前深度偏移方法. 石油地球物理勘探, 2001, 36(3): 291-296. Chen S C, Cao J Z, Ma Z T. Stable pre-stack depth migration method with Born approximation. Oil Geophysical Prospecting (in Chinese), 2001, 36(3): 291-296.
[8]  Lailly P. The seismic inverse problem as a sequence of before stack migrations.//Bednar J B, ed. Conference on Inverse Scattering: Theory and Application. Philadelphia: Society for Industrial and Applied Mathematics, 1983: 206-220.
[9]  Yu J, Hu J, Schuster G T, et al. Prestack migration deconvolution. Geophysics, 2006, 71(2): S53-S62.
[10]  Lecomte I. Resolution and illumination analyses in PSDM: A ray-based approach. The Leading Edge, 2008, 27(5): 650-663.
[11]  Claerbout J F. Toward a unified theory of reflector mapping. Geophysics, 1971, 36(3): 467-481.
[12]  Tarantola A. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 1984, 49(8): 1259-1266.
[13]  Etgen J, Gray S H, Zhang Y. An overview of depth imaging in exploration geophysics. Geophysics, 2009, 74(6): WCA5-WCA17.
[14]  Hadamard J. An Essay on the Psychology of Invention in the Mathematical Field. Princeton: Princeton University Press, 1945.
[15]  Tang Y. Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian. Geophysics, 2009, 74(6): WCA95-WCA107.
[16]  Bagaini C, Spagnolini U. 2-D continuation operators and their applications. Geophysics, 1996, 61(6): 1846-1858.
[17]  Formel S. Theory of differential offset continuation. Geophysics, 2003, 68(2): 718-732.
[18]  Stolt R H, Benson A K. Seismic Migration Theory and Practice: Theory and Practice. London: Geophysical Press, 1986.
[19]  冯波, 王华忠. 三维偏移距平面波有限差分偏移叠前时间偏移. 地球物理学报, 2011, 54(11): 2916-2925. Feng B, Wang H Z. 3D offset plane-wave finite-difference pre-stack time migration. Chinese J. Geophys. (in Chinese), 2011, 54(11): 2916-2925.
[20]  Sava P C, Fomel S. Angle-domain common-image gathers by wavefield continuation methods. Geophysics, 2003, 68(3): 1065-1074.
[21]  刘守伟, 王华忠, 程玖兵等. 时空移动成像条件及偏移速度分析. 地球物理学报, 2008, 51(6): 1883-1891. Liu S W, Wang H Z, Cheng J B, et al. Space-time-shift imaging condition and migration velocity analysis. Chinese J. Geophys. (in Chinese), 2008, 51(6): 1883-1891.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133