全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

断层破裂面倾角变化对断陷盆地强地面运动的影响

DOI: 10.6038/cjg20130719, PP. 2322-2331

Keywords: 断陷盆地,断层破裂面倾角,银川隐伏断层,强地面运动

Full-Text   Cite this paper   Add to My Lib

Abstract:

地震事件中,断层破裂面的倾角大小直接影响到地表强地震动的分布状态,尤其在断陷盆地中,强地面运动特征还可能受到盆地结构及盆地内多条围限断层的影响.本文模拟了银川断陷盆地内的活动断层——银川隐伏断层南段发生Mw6.5特征地震时,断层破裂面倾角在30°~85°范围内变化时引起的强地面运动,探讨了断层破裂面倾角变化对盆地内强地面运动分布特征和强度的影响.结果表明:破裂面倾角较缓时,银川盆地内的强地面运动分布区域不仅仅决定于发震断层的产状,同时还受到断层上盘距离最近的芦花台断层的影响,致使强地面运动集中于两条断层所围限的区域;随着发震断层破裂面的倾角逐渐增大,强地面运动以发震断层产状的影响为主,强震集中区向发震断层靠近并分布于发震断层上盘,且沿断层走向方向出现了强度不同的地震动反射区;尤其是发震断层破裂面倾角接近垂直时,受银川盆地"西陡东缓"结构和盆地西边界贺兰山东麓断裂反射作用的影响,竖向地震动反射区强度在远离发震断层的西北方向明显增大,致使芦花台断层附近区域与银川断层南段上盘区域成为地震发生时可能遭受震害最严重的地区.本文探讨结果提醒我们在类似区域的活动断层附近进行建(构)筑规划和地震工程设计时,有必要考虑发震断层破裂面倾角大小和盆地内其它断层构造的共同影响,综合评价潜在地震对盆地内近断层地表及各类建(构)筑物的危害性.

References

[1]  刘启方, 金星, 丁海平. 复杂场地条件下震源参数对断层附近长周期地震动的影响. 地球物理学报, 2008, 51(1): 186-196. Liu Q F, Jin X, Ding H P. Effects of the source parameters on long period near-fault ground motion in the case of complex site condition. Chinese Journal of Geophysics (in Chinese), 2008, 51(1): 186-196.
[2]  Frankel A D, Stephenson W J, Carver D L, et al. Seismic hazard maps for seattle, Washington, incorporating 3D sedimentary basin effects. Nonlinear Site Response, and Rupture Directivity. U. S. Geological Survey Open-File Report 2007. 2007, 1175, 77p., 3 pls.
[3]  Hruby C E, Beresnev I A. Empirical corrections for basin effects in stochastic ground-motion prediction, based on the Los Angeles basin analysis. Bulletin of the Seismological Society of America, 2003, 93(4): 1679-1690.
[4]  张冬丽, 徐锡伟, 赵伯明等. 强地面运动数值模拟中三维物理模型的建立方法—以昆明盆地为例. 地震学报, 2007, 29(2): 187-196. Zhang D L, Xu X W, Zhao B M, et al. 3-D physical model in strong ground motion numerical simulation: A case study of Kunming basin. Acta Seismologica Sinica (in Chinese), 2007, 29(2): 187-196.
[5]  Somerville P, Irikura K, Graves R, et al. Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seis. Res. Lett., 1999, 70(1): 59-80.
[6]  Wells D L, Coppersmith K H. New Empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 1994, 84: 974-1002.
[7]  Wang H Y, Tao X X, Li J. Global source parameters of finite fault model for strong ground motion simulations or predictions.//13th World Conference on Earthquake Engineering. Vancouver, B. C., Canada, 2004: 274.
[8]  张伟. 含地形起伏的三维非均匀介质中地震波传播的有限差分法及其在强地面运动模拟中的应用[博士论文]. 北京: 北京大学, 2006. Zhang W. Finite difference seismic wave modeling in 3D heterogeneous media with surface topography and its implementation in strong ground motion study[Ph. D. thesis] (in Chinese). Beijing: Beijing University, 2006.
[9]  Zhang W, Shen Y, Chen X F. Numerical simulation of strong ground motion for the Ms8.0 Wenchuan earthquake of 12 May 2008. Science in China Series D: Earth Science, 2008, 51(12): 1673-1682.
[10]  Aki K. Scaling law of seismic spectrum. J. Geophys. Res., 1967, 72(4): 1217-1231.
[11]  陶夏新, 王国新. 近场强地震动模拟中对破裂的方向性效应和上盘效应的表达. 地震学报, 2003, 25(2): 191-198. Tao X X, Wang G X. Rupture directivity and hanging wall effect in near field strong ground motion simulation. Acta Seismologica Sinica (in Chinese), 2003, 25(2): 191-198.
[12]  丁海平, 宋贞霞. 震源参数对地震动相干函数的影响. 振动与冲击, 2010, 29(7): 16-18, 74. Ding H P, Song Z X. Effects of source parameters on coherency function of ground motion. Journal of Vibration and Shock (in Chinese), 2010, 29(7): 16-18, 74.
[13]  Aagaard B T, Hall J F, Heaton T H. Effects of fault dip and slip rake angles on near-source ground motions: why rupture directivity was minimal in the 1999 Chi-Chi, Taiwan, Earthquake. Bulletin of the Seismological Society of America, 2004, 94(1): 155-170.
[14]  Wald D J. Slip History of the 1995 Kobe, Japan, earthquake determined from strong motion, teleseismic, and geodetic data. Journal of Physics of the Earth, 1996, 44(5): 489-503.
[15]  许力生, 陈运泰. 从全球长周期波形资料反演2001年11月14日昆仑山口地震时空破裂过程. 中国科学D辑, 2004, 34(3): 256-264. Xu L S, Chen Y T. Temporal and spatial rupture process of the great Kunlun Mountain pass earthquake of November 14, 2001 from the GDSN long period waveform data. Science in China Ser. D Earth Sciences (in Chinese), 2004, 34(3): 256-264.
[16]  Parsons T, Ji C, Kirby E. Stress changes from the 2008 Wenchuan Earthquake and increased hazard in the Sichuan basin. Nature, 2008, 454(7203): 509-510.
[17]  张勇, 冯万鹏, 许力生等. 2008年汶川大地震的时空破裂过程. 中国科学D辑, 2008, 38(10): 1186-1194. Zhang Y, Feng W P, Xu L S, et al. Temporal and spatial rupture process of 2008 Wenchuan Earthquake, China. Science in China Ser. D Earth Sciences (in Chinese), 2008, 38(10): 1186-1194.
[18]  Graves R W. Three-dimensional finite-difference modeling of the San Andreas fault: source parameterization and ground-motion levels. Bulletin of the Seismological Society of America, 1998, 88(4): 881-897.
[19]  Ripperger J, Mai P M, Ampuero J P. Variability of near-field ground motion from dynamic earthquake rupture simulations. Bulletin of the Seismological Society of America, 2008, 98(3): 1207-1228.
[20]  姜慧, 沈钧, 俞言祥等. 逆断层地震近场地震动影响场和地表形变模拟. 地震工程与工程振动, 2006, 26(1): 11-17. Jiang H, Shen J, Yu Y X, et al. Dynamic simulation of effect field of strong ground motions and deformation of ground near reverse fault. Earthquake Engineering and Engineering Vibration (in Chinese), 2006, 26(1): 11-17.
[21]  张冬丽, 张伟, 徐锡伟等. 断层破裂方式对银川盆地强地面运动的影响. 地震工程与工程振动, 2009, 29(4): 1-8. Zhang D L, Zhang W, Xu X W, et al. Influence of seismic source rupture mode on strong ground motion in Yinchuan Basin. Earthquake Engineering and Engineering Vibration (in Chinese), 2009, 29(4): 1-8.
[22]  宁夏地质局研究队《地质力学》编图组. 宁夏回族自治区构造体系图(1:50万). 银川: 宁夏人民出版社, 1980. Geology Administration of Ninxia Hui Autonomous Region. Geological Structural System Map in Ninxia Hui Autonomous Region (1:500000) (in Chinese). Yinchuan: Ningxia People''s Press, 1980.
[23]  严烈宏, 王利等著. 银川盆地地热系统. 银川: 宁夏人民出版社, 2002. Yan H L, Wang L, et al. Geothermal System in Yinchuan Basin (in Chinese). Yinchuan: Ningxia People''s Publishing House, 2002.
[24]  方盛明, 赵成彬, 柴炽章等. 银川断陷盆地地壳结构与构造的地震学证据. 地球物理学报, 2009, 52(7): 1768-1775. Fang S M, Zhao C B, Chai C Z, et al. Seismic evidence of crustal structures in the Yinchuan faulted basin. Chinese Journal of Geophysics (in Chinese), 2009, 52(7): 1768-1775.
[25]  柴炽章, 孟广魁, 杜鹏等. 隐伏活动断层的多层次综合探测—以银川隐伏活动断层为例. 地震地质, 2006, 28(4): 536-546. Chai C Z, Meng G K, Du P, et al. Comprehensive multi-level exploration of buried active fault: an example of Yinchuan buried active fault. Seismology and Geology (in Chinese), 2006, 28(4): 536-546.
[26]  Lei Q Y, Chai C Z, Du P, et al. Characteristics of late Quaternary activity of the Luhuatai buried fault revealed by drilling. Earthquake Research in China, 2012, 26(2): 168-180.
[27]  柴炽章, 孟广魁, 马贵仁等. 银川市活动断层探测与地震危险性评价. 北京: 科学出版社, 2011. Chai C Z, Meng G K, Ma G R, et al. Active Fault Surveying and Seismic Hazard Evolution in Yinchuan Basin (in Chinese). Beijing: Science Press, 2011.
[28]  丁国瑜, 田勤俭, 孔凡臣等. 活断层分段—原则、方法及应用. 北京: 地震出版社, 1993: 39-76. Ding G Y, Tian Q J, Kong F C, et al. Principles and Methods for Segmentation of Active Faults and Their Applications (in Chinese). Beijing: Seismological Press, 1993: 39-76.
[29]  李孟銮, 万自成. 1739年平罗8.0级地震的发震构造及其孕育特征. 地震地质, 1984, 6(3): 23-28. Li M L, Wan Z C. Characteristics of the earthquake generating structures for magnitude 8.0 earthquake of 1739 and the process of its preparation. Seismology and Geology (in Chinese), 1984, 6(3): 23-28.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133