武凛, 胡维, 马杰等. 基于重力异常分析的重力梯度图制备方法. 华中科技大学学报 (自然科学版), 2009, 37(11): 57-60. Wu L, Hu W, Ma J, et al. Modeling full-tensor gravity gradient maps using gravity anomaly analysis. Journal of Huazhong University of Science & Technology (Natural Science Edition) (in Chinese), 2009, 37(11): 57-60.
[2]
Gabell A R, Tuckett H. Project 200380 West Arnhem Land GT-1A Airborne Gravity Survey. Canberra: Geoscience Australia and Northern Territory Geological Survey, 2004.
[3]
Moritz H. Kinematical Geodesy II, 1971. Report No. 92. Reports of the Department of Geodetic Science. www.dtic.mil/dtic/tr/fulltext/u2/666052.pdf.
[4]
Bell R. Gravity gradiometry. Scientific American, 1998, 278: 74-79.
[5]
Petrovskaya M S, Vershkov A N. Development of the Second-order derivatives of the Earth''s potential in the local north-oriented reference frame in orthogonal series of modified spherical harmonics. Journal of Geodesy, 2008, 82(12): 929-944.
[6]
Pertrovikaya M S, Vershkov A N. Non-singular expressions for the gravity gradients in the local north-oriented and orbital reference frames. Journal of Geodesy, 2006, 80(3): 117-127.
[7]
郭春喜, 宁津生, 陈俊勇等. 珠峰地区似大地水准面精化与珠峰顶正高的确定. 地球物理学报, 2008, 51(1): 101-107. Guo C X, Ning J S, Chen J Y, et al. Improvement of regional quasi-geoid in Qomolangma (Mt. Everest) and determination of orthometric elevation. Chinese J. Geophys. (in Chinese), 2008, 51(1): 101-107.
[8]
钱东, 刘繁明, 李艳等. 导航用重力梯度基准图构建方法的比较研究. 测绘学报, 2011, 40(6): 736-744. Qian D, Liu F M, Li Y, et al. Comparison of gravity gradient reference map composition for navigation. Acta Geodaetica et Cartographica Sinica (in Chinese), 2011, 40(6): 736-744.
[9]
Mickus K L, Hinojosa J H. The complete gravity gradient tensor derived from the vertical component of gravity: a Fourier transform technique. Journal of Applied Geophysics, 2001, 46(3): 159-174.
[10]
万晓云, 于锦海, 曾艳艳. GOCE引力梯度的频谱分析及滤波. 地球物理学报, 2012, 55(9): 2909-2916. Wan X Y, Yu J H, Zeng Y Y. Frequency analysis and filtering processing of gravity gradients data from GOCE. Chinese J. Geophys. (in Chinese), 2012, 55(9): 2909-2916.
[11]
Fukushima T. Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers: II first-, second-, and third-order derivatives. Journal of Geodesy, 2012, 86(11): 1019-1028.
[12]
Stelkens-Kobsch T H. The Airborne Gravimeter CHEK AN-A at the Institute of Flight Guidance (IFF). www.upf.pf/ICET/cd_rom_bgi/Cours/Heyen/PAPER.pdf.
[13]
Vasco D W, Taylor C. Inversion of airborne gravity gradient data, southwestern Oklahoma. Geophysics, 1991, 56(1): 90-101.
[14]
Lee J B. FALCON gravity gradiometer technology. Exploration Geophysics, 2001, 32(4): 247-250.
[15]
While J, Jackson A, Smit D, et al. Spectral analysis of gravity gradiometry profiles. Geophysics, 2006, 71(1): J11-J22.
[16]
Moody M V. A superconducting gravity gradiometer for measurements from a moving vehicle. Review of Scientific Instruments, 2011, 82(9): 094501.
[17]
武凛, 马杰, 周瑶等. 重力场匹配导航的全张量重力梯度基准图模拟. 系统仿真学报, 2009, 21(22): 7037-7041. Wu L, Ma J, Zhou Y, et al. Modelling full-tensor gravity gradient maps for gravity matching navigation. Journal of System Simulation (in Chinese), 2009, 21(22): 7037-7041.
[18]
边少锋, 张赤军. 地形起伏对重力垂直梯度影响的计算. 物探化探计算技术, 1999, 21(2): 133-140. Bian S F, Zhanf C J. Computation of topographic effects on vertical gravity gradient. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 1999, 21(2): 133-140.
[19]
张赤军. 用地形数据确定重力异常垂直梯度. 科学通报, 1999, 44(6): 656-661. Zhang C J. Using topographic data to determine the vertical gradient of gravity anomaly. Chinese Science Bulletin (in Chinese), 1999, 44(6): 656-661.
[20]
Jekeli C, Zhu L Z. Comparison of methods to model the gravitational gradients from topographic data bases. Geophysical Journal International, 2006, 166(3): 999-1014.
[21]
Zhu L Z, Jekeli C. Gravity gradient modeling using gravity and DEM. Journal of Geodesy, 2009, 83(6): 557-567.
[22]
Zhu L, Jekeli C. Combining gravity and topographic data for local gradient modeling. Dynamic Planet, 2007, 130: 288-295.
[23]
Zhu L Z. Gradient Modeling with Gravity and DEM. Ohio: Ohio State University, 2007. www.geology.osu.edu/~jekeli.1/OSUReports/reports/report_483.pdf.
[24]
Australia G. Geophysical Archive Data Delivery System(GADDS)[EB/OL].[2010-05-10]. http://www.ga.gov.au/gadds.
[25]
Forsberg R. Gravity field terrain effect computations by FFT. Bull. Geod., 1985, 59(4): 342-260.
[26]
Dransfield M H. Airborne Gravity Gradiometry[Ph. D. thesis]. Australia: University of Western Australia,1994.
[27]
Jekeli C. Correlation modeling of the gravity field in classical geodesy.//Freedn W, Nashed M Z, Sonar T eds. Handbook of Geomathematics. Heidelberg: Springer Verlag, 2010: 833-864.
[28]
Jekeli C. Airborne gradiometry error analysis. Surveys in Geophysics, 2006, 27(2): 257-275.
[29]
Jekeli C. Statistical analysis of moving-base gravimetry and gravity gradiometry. Report no. 466, Geodetic Science. Columbus: Ohio State University. http://www.geology.osu.edu/~jekeli.1/OSUReports/reports/report_466.pdf.
[30]
Heck B. On Helmert''s methods of condensation. Journal of Geodesy, 2003, 77(3-4): 155-170.
[31]
Flury J. Short-wavelength spectral properties of the gravity field from a range of regional data sets. Journal of Geodesy, 2006, 79(10-11): 624-640.
[32]
柳林涛, 许厚泽. 航空重力测量数据的小波滤波处理. 地球物理学报, 2004, 47(3): 490-494. Liu L T, Xu H Z. Wavelets in airborne gravimetry. Chinese J. Geophys. (in Chinese), 2004, 47(3): 490-494.