全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

等离子体湍动对准垂直激波中粒子加速的影响

DOI: 10.6038/cjg20130704, PP. 2171-2176

Keywords: 试验粒子方法,激波,粒子加速,等离子体湍动

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用试验粒子方法研究了在考虑等离子体湍动的情况下带电粒子在准垂直激波中的加速,在计算中,我们采用组合模型来拟合等离子体湍动.计算结果表明,在存在等离子体湍动的情况下,粒子可横越背景磁场运动,从而被激波反射的上游粒子在到达下游后可被等离子体湍动散射回到上游,并再次被激波反射并加速,这样的过程可重复很多次,因而粒子可被加速到很高的能量.我们还研究了激波角,粒子的初始能量和等离子体湍动的强度,以及相干长度和两种湍动组分强度比与加速粒子的能谱之间的关系.

References

[1]  Jones F C, Ellison D C. The plasma physics of shock acceleration. Space Science Reviews, 1991, 58(1): 259-346.
[2]  Axford W I, Leer E, Skadron G. The acceleration of cosmic rays by shock waves.//International Cosmic Ray Conference, 15th, Plovdiv, Bulgaria, 1977.
[3]  Bell A R. The acceleration of cosmic rays in shock fronts. I. Monthly Notices of the Royal Astronomical Society, 1978, 182: 147-156.
[4]  Bell A R. The acceleration of cosmic rays in shock fronts. II. Monthly Notices of the Royal Astronomical Society, 1978, 182: 443-455.
[5]  Krymskii G F. A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akademiia Nauk SSSR Doklady, 1977: 1306-1308.
[6]  Giacalone J, Burgess D, Schwartz S J, et al. Hybrid simulations of protons strongly accelerated by a parallel collisionless shock. Geophys. Res. Lett., 1992, 19(5): 433-436.
[7]  Kucharek H, Scholer M. Injection and acceleration of interstellar pickup ions at the heliospheric termination shock. J. Geophys. Res., 1995, 100(A2): 1745-1754.
[8]  Tsurutani B T, Smith E J, Jones D E. Waves observed upstream of interplanetary shocks. J. Geophys. Res., 1983, 88(A7): 5645-5656.
[9]  Lever E L, Quest K B, Shapiro V D. Shock surfing vs. shock drift acceleration. Geophys. Res. Lett., 2001, 28(7): 1367-1370.
[10]  杨忠炜, 陆全明, 郭俊等. 垂直无碰撞激波的离子加速机制. 地球物理学报, 2008, 51(4): 953-959. Yang Z W, Lu Q M, Guo J, et al. Mechanism of ion acceleration at perpendicular collisionless shocks. Chinese J. Geophys. (in Chinese), 2008, 51(4): 953-959.
[11]  Yang Z W, Lu Q M, Lembège B, et al. Shock front nonstationarity and ion acceleration in supercritical perpendicular shocks. J. Geophys. Res., 2009, 114(A3): A3111.
[12]  Yang Z W, Lembège B, Lu Q M. Impact of the rippling of a perpendicular shock front on ion dynamics. J. Geophys. Res., 2012, 117(A7): A7222.
[13]  Decker R B. The role of magnetic loops in particle acceleration at nearly perpendicular shocks. J. Geophys. Res., 1993, 98(A1): 33-46.
[14]  Giacalone J, Jokipii J R. Perpendicular transport in shock acceleration. J. Geophys. Res., 1996, 101(A5): 11095-11106.
[15]  Giacalone J, Ellison D C. Three-dimensional numerical simulations of particle injection and acceleration at quasi-perpendicular shocks. J. Geophys. Res., 2000, 105(A6): 12541-12556.
[16]  Giacalone J. Particle acceleration at shocks moving through an irregular magnetic field. The Astrophysical Journal, 2008, 624(2): 765-772.
[17]  Bieber J W, Wanner W, Matthaeus W H. Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport. J. Geophys. Res., 1996, 101(A2): 2511-2522.
[18]  Gray P C, Pontius D H J, Matthaeus W H. Scaling of field-line random walk in model solar wind fluctuations. Geophys. Res. Lett., 1996, 23(9): 965-968.
[19]  Giacalone J, Jokipii J R. The transport of cosmic rays across a turbulent magnetic field. The Astrophysical Journal, 1999, 520(1): 204-214.
[20]  Giacalone J, Armstrong T P, Decker R B. Effect of magnetic overshoot on shock drift acceleration. J. Geophys. Res., 1991, 96(A3): 3621-3626.
[21]  Lee M A, Shapiro V D, Sagdeev R Z. Pickup ion energization by shock surfing. J. Geophys. Res., 1996, 101(A3): 4777-4789.
[22]  Li G, Shalchi A, Ao X, et al. Particle acceleration and transport at an oblique CME-driven shock. Advances in Space Research, 2012, 49(6): 1067-1075.
[23]  Blandford R D, Ostriker J P. Particle acceleration by astrophysical shocks. The Astrophysical Journal, 1978, 221: L29-L32.
[24]  Blandford R, Eichler D. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Physics Reports, 1987, 154(1): 1-75.
[25]  Ellison D C. Monte Carlo simulation of charged particles upstream of the Earth''s bow shock. Geophys. Res. Lett., 1981, 8(9): 991-994.
[26]  Quest K B. Theory and simulation of collisionless parallel shocks. J. Geophys. Res., 1988, 93(A9): 9649-9680.
[27]  Scholer M. Diffuse ions at a quasi-parallel collisionless shock: Simulations. Geophys. Res. Lett., 1990, 17(11): 1821-1824.
[28]  Zank G P, Pauls H L, Cairns I H, et al. Interstellar pickup ions and quasi-perpendicular shocks: Implications for the termination shock and interplanetary shocks. J. Geophys. Res., 1996, 101(A1): 457-477.
[29]  Shapiro V D, Ver D. Shock surfing acceleration. Planetary and Space Science, 2003, 51(11): 665-680.
[30]  Guo F, Giacalone J. The effect of large-scale magnetic turbulence on the acceleration of electrons by perpendicular collisionless shocks. The Astrophysical Journal, 2010, 715(1): 406.
[31]  Gosling J T, Winske D, Thomsen M F. Noncoplanar magnetic fields at collisionless shocks: A test of a new approach. J. Geophys. Res., 1988, 93(A4): 2735-2740.
[32]  Decker R B. Computer modeling of test particle acceleration at oblique shocks. Space Science Reviews, 1988, 48(3-4): 195-262.
[33]  Craven J D, Frank L A, Russell C T, et al. Global auroral responses to magnetospheric compressions by shocks in the solar wind: Two cases studies.//Solar Wind-Magnetosphere Coupling, Proceedings of the Chapman Conference. Pasadena: Tokyo/Dordrecht, Terra Scientific Publishing, 1986: 367-380.
[34]  Du A M, Sun W, Tsurutani B T, et al. Observations of dawn-dusk aligned polar cap aurora during the substorms of January 21, 2005. Planetary and Space Science, 2011, 59(13): 1551-1558.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133