全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

COSMIC大气掩星与SABER/TIMED探测温度数据比较

DOI: 10.6038/cjg20130702, PP. 2152-2162

Keywords: COSMIC,大气掩星,SABER/TIMED,温度,比较

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用2009年1月—2011年12月共3年的COSMIC大气掩星观测数据与SABER/TIMED探测数据开展15~60km大气温度数据的比较分析研究,计算COSMIC与SABER/TIMED探测温度的绝对偏差(TSABER-TCOSMIC),并统计其平均温度偏差和标准偏差,分析温度偏差随高度、纬度和季节的分布特征,为COSMIC大气掩星与SABER/TIMED探测数据的应用提供更多的参考依据.结果表明:COSMIC与SABER/TIMED数据所反映的温度随高度的变化特征是一致的,数据的大体趋势吻合较好.全球范围的平均温度偏差在38km左右接近于0K,在38km以上,平均温度偏差表现为负的系统性偏差,且随着高度逐渐增大,在38km以下,平均温度偏差表现为正的系统性偏差,在23km左右存在极大值,约为2.7K.COSMIC与SABER/TIMED温度偏差的分布存在着随纬度和季节的变化特征,35km以下,平均温度偏差在高纬地区和冬季较小,低纬地区和夏季较大,35km以上,平均温度偏差在高纬地区和冬季较大,低纬地区和夏季较小.温度偏差的标准偏差在低纬地区和夏季较小,高纬地区和冬季较大.纬圈平均的温度偏差在南北半球的分布基本呈对称结构.

References

[1]  Anthes R A, Ector D, Hunt D C, et al. The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 2008, (89): 313-333.
[2]  Ho S P, Goldberg M, Kuo Y H, et al. Calibration of temperature in the lower stratosphere from microwave measurements using COSMIC radio occultation data: Preliminary results. Terr. Atmos. Oceanic Sci., 2009, 20(1), doi: 10.3319/TAO.2007.12.06.01.
[3]  Sokolovskiy S, Rocken C, Schreiner W, et al. On the uncertainty of radio occultation inversions in the lower troposphere. J. Geophys. Res., 2010, 115(D22): D22111, doi: 10.1029/2010JD014058.
[4]  Kuo Y H, Wee T K, Sokolovskiy S, et al. Inversion and error estimation of GPS radio occultation data. Journal of the Meteorological Society of Japan, 2004, 82(1B): 507-531.
[5]  宫晓艳, 胡雄, 吴小成等. 大气掩星反演误差特性初步分析. 地球物理学报, 2007, 50(4): 1017-1029. Gong X Y, Hu X, Wu X C, et al. Preliminary analysis of error characteristics in atmospheric inversion of GPS radio occultation. Chinese J. Geophys. (in Chinese), 2007, 50(4): 1017-1029.
[6]  Wickert J. Comparison of vertical refractivity and temperature profiles from CHAMP with radiosonde measurements. Potsdam-Scientific Technical Report: 04/19.ISSN1610-0956. Potsdam: Deutsches Geo Forschungs Zentrum GFZ, 2004.
[7]  Kuo Y H, Schreiner W S, Wang J, et al. Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett., 2005, 32(5): L05817, doi: 10.1029/2004GL021443.
[8]  Gille J C, House F B. On the inversion of limb radiance measurements. I: Temperature and thickness. J. Atmos. Sci., 1971, 28(8): 1427-1442.
[9]  Gille J C, Bailey P L, Craig A R, et al. Sounding the stratosphere and mesosphere by infrared limb scanning from space. Science, 1980, 208(4442): 397-399.
[10]  Gille J C, Russell J M III. The limb infrared monitor of the stratosphere: Experiment description, performance, and results. J. Geophys. Res., 1984, 89(D4): 5125-5140.
[11]  Russell J M III, Mlynczak M G, Gordley L L, et al. An overview of the SABER experiment and preliminary calibration results.//Larar A M ed. Optical Spectroscopic Techniques and Instrumentation for atmospheric and Space Research III. Denver: Proc. SPIE Int. Soc. Opt. Eng., 1999, 3756: 277-288.
[12]  Remsberg E E, Marshall B T, García-Comas M, et al. Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res., 2008, 113(D17): D17101, doi: 10.1029/2008JD010013.
[13]  García-Comas M, López-Puertas M, Marshall B T, et al. Errors in sounding of the atmosphere using broadband emission radiometry (SABER) kinetic temperature caused by non-local-thermodynamic-equilibrium model parameters. J. Geophys. Res., 2008, 113(D24): D24106, doi: 10.1029/2008JD010105.
[14]  Remsberg E, Lingenfelser G, Harvey V L, et al. On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with Met Office assimilated analyses. J. Geophys. Res., 2003, 108(D20): 4628, doi: 10.1029/2003JD003720.
[15]  López-Puertas M, Taylor F W. Non-LTE Radiative Transfer in the Atmosphere. Tokyo: World Scientific, 2001.
[16]  Mertens C J, Mlynczak M G, López-Puertas M, et al. Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 μm Earth limb emission under non-LTE conditions. Geophys. Res. Lett., 2001, 28(7): 1391-1394, doi: 10.1029/2000GL012189.
[17]  Mertens C J, Russell J M III, Mlynczak M G, et al. Kinetic temperature and carbon dioxide from broadband infrared limb emission measurements taken from the TIMED/SABER instrument. Adv. Space Res., 2008, 43(1): 15-27, doi: 10.1016/j.asr.2008.04.017.
[18]  Ho S P, Kuo Y H, Schreiner W, et al. Using SI-traceable Global Positioning System radio occultation measurements for climate monitoring. Bull. Am. Meteorol. Soc., 2010, 91(7): S36-S37.
[19]  徐晓华, 罗佳. COSMIC掩星折射指数廓线的统计验证. 武汉大学学报 (信息科学报), 2009, 34(2): 214-217. Xu X H, Luo J. Statistical validation of COSMIC radio occultation refractivity profiles. Geomatics and Information Science of Wuhan University (in Chinese), 2009, 34(2): 214-217.
[20]  杜晓勇. 天基GNSS掩星探测技术与应用研究[博士论文]. 北京: 北京大学, 2009. Du X Y. Research on spaceborne GNSS occultation technique and application[Ph. D. thesis](in Chinese). Beijing: Peking University, 2009.
[21]  Melbourne W, Davis E, Duncan C, et al. The Application of Spaceborne GPS to Atmospheric Limb Sounding and Global Change Monitoring. Pasadena, California: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1994: 147.
[22]  Kursinski E R, Hajj G A, Schofield J T, et al. Observing earth''s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res., 1997, 102(D19): 23429-23465.
[23]  Steiner A K, Kirchengast G, Foelsche U, et al. GNSS occultation sounding for climate monitoring. Phys. Chem. Earth (A), 2001, 26(3): 113-124, doi: 10.1016/S1464-1895(01)00034-5.
[24]  Hajj G A, Kursinski E R, Romans L J, et al. A technical description of atmospheric sounding by GPS occultation. J. Atmos. Sol.-Terr. Phys., 2002, 64(4): 451-469, doi: 10.1016/S1364-6826(01)00114-6.
[25]  Fu E J, Zhang K F, Marion K Y, et al. Assessing COSMIC GPS radio occultation derived atmospheric parameters using Australian radiosonde network data. Procedia Earth and Planetary Science, 2009, 1(1): 1054-1059.
[26]  Chou M D, Weng C H, Lin P H. Analyses of FORMOSAT-3/COSMIC humidity retrievals and comparisons with AIRS retrievals and NCEP/NCAR reanalyses. J. Geophys. Res., 2009, 114(D2): D00G03, doi: 10.1029/2008JD010227.
[27]  Schmidt T, Wickert J, Heise S, et al. Comparison of ECMWF analyses with GPS radio occultations from CHAMP. Ann. Geophys., 2008, 26(11): 3225-3234.
[28]  Sun B M, Reale A, Seidel D J, et al. Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J. Geophys. Res., 2010, 115(D23): D23104, doi: 10.1029/2010JD014457.
[29]  Wrasse C M, Fechine J, Takahashi H, et al. Temperature comparison between CHAMP radio occultation and TIMED/SABER measurements in the lower stratosphere. Adv. Space Res., 2008, 41(9): 1423-1428.
[30]  Yuei-An L, Pavelyev A G, Liu S F, et al. FORMOSAT-3/COSMIC GPS radio occultation mission: Preliminary results. IEEE Transactions on Geosciences and Remote Sensing, 2007, 45(11): 3813-3826.
[31]  López-Puertas M, García-Comas M, Funke B, et al. Evidence for an OH(u) excitation mechanism of CO2 4.3 μm nighttime emission from SABER/TIMED measurements. J. Geophys. Res., 2004, 109(D9): D09307, doi: 10.1029/2003JD004383.
[32]  Mertens C J, Schmidlin F J, Goldberg R A, et al. SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign. Geophys. Res. Lett., 2004, 31(3): L03105, doi: 10.1029/2003GL018605.
[33]  徐晓华, Zhang K F, 汪海洪. 不同季节GPS掩星廓线精度的比较研究. 武汉大学学报(信息科学报), 2010, 35(6): 639-643. Xu X H, Zhang K F, Wang H H. Comparison of precision of GPS radio occultation profiles in different seasons. Geomatics and Information Science of Wuhan University (in Chinese), 2010, 35(6): 639-643.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133