全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

日本俯冲带地震发生过程的数值模拟研究

DOI: 10.6038/cjg20130717, PP. 2303-2312

Keywords: 日本俯冲带,数值模拟,黏滑,地震

Full-Text   Cite this paper   Add to My Lib

Abstract:

了解地震发生的动力学机制是研究地震发震原因的关键,而数值模拟的方法是高速、有效的手段.2011年3月11日日本东北部宫城县发生9.0级大地震,文中以该次大地震所在的日本俯冲带为研究对象,通过使用黏弹性有限元数值模拟,并引用接触对,建立了研究区二维数值模型,模拟俯冲带与上覆板片之间的滑动、黏滞到再滑动的过程,亦即断层失稳发生地震的过程.模拟结果显示,随着太平洋板块不断俯冲,在俯冲带上自发出现了断层闭锁、解锁到再闭锁的黏滑过程,且这种过程呈现一定的准周期性,大事件主要集中分布在20~30km的深度范围内.根据俯冲带可能在俯冲过程中角度的变化,建立了不同的模型,进行模拟对比研究,结果表明,俯冲带的几何形态,以及俯冲角度变化所在的不同深度,对模拟的结果有不同的影响.

References

[1]  温瑞智, 任叶飞, 李小军. 日本Mw9.0级地震海啸数值模拟与启示. 国际地震动态, 2011, (4): 22-27. Wen R Z, Ren Y F, Li X J. The tsunami simulation for off the Pacific coast of Tohoku earthquake and disaster mitigation in China. Recent Developments in World Seismology (in Chinese), 2011, (4): 22-27.
[2]  Ozawa S, Nishimura T, Suito H, et al. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 2011, 475(7356): 373-376, doi: 10.1038/nature10227.
[3]  Kerr R A. A tantalizing view of what set off Japan''s killer quake. Science, 2012, 335(6066): 272, doi: 10.1126/science.335.6066.272.
[4]  Kato A, Obara K, Lgarashi T, et al. Propagation of slow slip leading up to the 2011 Mw9.0 Tohoku-Oki earthquake. Science, 2012, 335(6069): 705-708.
[5]  徐彦. 2011年日本9.0级及7.5级地震震源破裂反投影初步结果. 国际地震动态, 2011, (4): 34-37, 5. Xu Y. Back projection results of the 2011 Japan Mw9.0 and M7.5 earthquakes. Recent Developments in World Seismology (in Chinese), 2011, (4): 34-37, 5.
[6]  Shinzaburo O, Takuya N, Hisashi S, et al. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature,2011,475: 373-376.
[7]  Kelin W L, Yan H, He J H. Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature, 2012, 484(7394): 327-332.
[8]  Fukao Y, Obayashi M, Nakakuki T, et al. Stagnant slab: A review. Annu Rev Earth Planet Sci, 2009, 37(1): 19-46.
[9]  DeMets C, Gorden R G, Argus D F, et al. Current plate motions. Geophys. J. Int., 1990, 101(2): 425-478.
[10]  Yoshi T. A detailed cross-section of the deep seismic zone beneath northeastern Honshu, Japan. Tectonophysics, 1979, 55(3-4): 349-360.
[11]  张建, 汪集旸. 南海北部陆缘带构造扩张的深部地球动力学特征. 中国科学D辑, 2000, 30(6): 561-567. Zhang J, Wang J Y. Geodynamic characteristics of tectonic extension in the northern margin of South China Sea. Science in China (Series D), 2001, 44(5): 437-445.
[12]  石耀霖, 王其允. 斜俯冲板块边界变形分配的力学分析. 地球物理学报, 1994, 37(5): 606-612. Shi Y L, Wang Q Y. Mechanics of deformation partitioning at plate boundaries of oblique subduction. Chinese J. Geophys. (in Chinese), 1994, 37(5): 606-612.
[13]  李大鹏, 陈岳龙, 靳野. 板块俯冲带研究中的数值实验. 地球科学进展, 2010, 25(6): 582-596. Li D P, Chen Y L, Jin Y. Numerical simulation in subduction zone study. Advances in Earth Science (in Chinese), 2010, 25(6): 582-596.
[14]  Yoshioka S, Loo H Y, Mikumo T, et al. A model of post-seismic recovery induced by a deep-focus earthquake. Physics of the Earth and Planetary Interiors, 1992, 72(1-2): 83-98.
[15]  Huang Z C, Zhao D P, Wang L S. Shear wave anisotropy in the crust, mantle wedge, and subducting Pacific slab under northeast Japan. Geochem., Geophy. Geosyst., 2011, 12(1): Q01002, doi: 10.1029/2010GC003343.
[16]  Loo H Y, Gao X L, Sun J X, et al. Three-dimensional numerical modeling of earthquake migration along a northwestern Pacific subduction slab. Geophys. Res. Lett., 1992, 19(3): 313-316.
[17]  臧绍先, 宁杰远, 景志成. 俯冲带流变性质的研究. 中国科学D辑, 2001, 31(9): 705-711. Zang S X, Ning J Y, Jing Z C. Study on the rheology of subducting slabs. Science in China (Series D), 2001, 44(12): 1119-1127.
[18]  Zhao D P. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys. Earth. Planet. Inter., 2004, 146(1-2): 3-34.
[19]  Zhu G Z, Shi Y L, Tackley P. Subduction of the Western Pacific Plate underneath Northeast China: Implications of numerical studies. Physics of the Earth and Planetary Interiors, 2010, 178(1-2): 92-99.
[20]  朱守彪, 张培震. 2008年汶川Ms8.0地震发生过程的动力学机制研究. 地球物理学报, 2009, 52(2): 418-427. Zhu S B, Zhang P Z. A study on the dynamical mechanisms of the Wenchuan Ms8.0 earthquake, 2008. Chinese J. Geophys. (in Chinese), 2009, 52(2): 418-427.
[21]  朱守彪, 邢会林, 谢富仁等. 地震发生过程的有限单元法模拟——以苏门答腊俯冲带上的大地震为例. 地球物理学报, 2008, 51(2): 460-468. Zhu S B, Xing H L, Xie F R, et al. Simulation of earthquake processes by finite element method: The case of megathrust earthquakes on the Sumatra subduction zone. Chinese J. Geophys. (in Chinese), 2008, 51(2): 460-468.
[22]  Gorczy W, Willner A P, Gerya T V, et al. Physical controls of magmatic productivity at Pacific-type convergent margins: Numerical modelling. Physics of the Earth and Planetary Interiors, 2007, 163(1): 209-232.
[23]  Hall C E, Gurnis M, Sdrolias M, et al. Catastrophic initiation of subduction following forced convergence across fracture zones. Earth and Planetary Science Letters, 2003, 212(1-2): 15-30.
[24]  Hassani R, Jongmans D, Chery J. Study of plate deformation and stress in subduction processes using two-dimensional numerical models. Journal of Geophysical Research, 1997, 102(B8): 17951-17965.
[25]  Sobolev S V, Babey A Y. What drives orogeny in the Andes? Geology, 2005, 33(8): 617-620.
[26]  Tagawa M, Nakakuki T, Kameyama M, et al. The role of history-dependent rheology in plate boundary lubrication for generating one-sided subduction. Pure and Applied Geophysics, 2007, 164(5): 879-907.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133