全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国区域IGS基准站坐标时间序列非线性变化的成因分析

DOI: 10.6038/cjg20130710, PP. 2228-2237

Keywords: 地表质量负载,IGS基准站,非线性变化,噪声特性,周日、半周日大气潮汐

Full-Text   Cite this paper   Add to My Lib

Abstract:

GPS坐标时间序列呈现显著的季节性变化,通常认为大气压、非潮汐海洋负载及水文负载(统称为地表质量负载)是引起测站谐波变化的主要因素.本文计算了不同地表质量负载造成的测站位移,以此修正中国区域11个IGS基准站的坐标时间序列.建立了地球物理现象与测站季节性变化及噪声特性之间的初步数值联系,认为其会造成测站的噪声特性变化,主要表现为带通及随机漫步噪声特征,且仅能减小测站U分量的周年运动,但并不是造成测站U分量半周年运动及水平方向周年运动的主要原因.深入分析了造成中国区域IGS基准站非线性变化的其他可能因素,重点探讨了周日(S1)、半周日(S2)大气潮汐对基准站周年振幅的贡献,由此提出S1、S2大气潮汐是造成中国区域IGS基准站周年运动,尤其是中南部测站垂向周年运动的主要因素之一.

References

[1]  田云锋, 沈正康. GPS坐标时间序列中非构造噪声的剔除方法研究进展. 地震学报, 2009, 31(1): 68-81. Tian Y F, Shen Z K. Progress on reduction of non-tectonic noise in GPS position time series. Acta Seismologica Sinica (in Chinese), 2009, 31(1): 68-81.
[2]  姜卫平, 李昭, 刘万科等. 顾及非线性变化的地球参考框架建立与维持的思考. 武汉大学学报 (信息科学版), 2010, 35(6): 665-669. Jiang W P, Li Z, Liu W K, et al. Some thoughts on establishment and maintenance of terrestrial reference frame considering non-linear variation. Geomatics and Information Science of Wuhan University (in Chinese), 2010, 35(6): 665-669.
[3]  Altamimi Z, Boucher C, Willis P. Terrestrial reference frame requirements within GGOS perspective. Journal of Geodynamics, 2005, 40(4-5): 363-374.
[4]  van Dam T, Wahr J, Milly P C D, et al. Crustal displacements due to continental water loading. Geophysical Research Letters, 2001, 28(4): 651-654.
[5]  Dong D, Fang P, Bock Y, et al. Anatomy of apparent seasonal variations from GPS-derived site position time series. Journal of Geophysical Research, 2002, 107(B4): ETG9-1-ETG9-16, doi: 10.1029/2001JB000573.
[6]  袁林果, 丁晓利, 陈武等. 香港GPS基准站坐标序列特征分析. 地球物理学报, 2008, 51(5): 1372-1384. Yuan L G, Ding X L, Chen W, et al. Characteristics of daily position time series from the Hong Kong GPS fiducial network. Chinese J. Geophys. (in Chinese), 2008, 51(5): 1372-1384.
[7]  Tregoning P, Watson C. Atmospheric effects and spurious signals in GPS analyses. J. Geophys. Res., 2009, 114(B9): B09403), doi: 10.1029/2009JB006344.
[8]  Petrie E J, King M A, Moore P, et al. Higher-order ionospheric effects on the GPS reference frame and velocities. J. Geophys. Res., 2010, 115(B3): B03417, doi: 10.1029/2009JB006677.
[9]  Steigenberger P, Boehm J, Tesmer V. Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J. Geod., 2009, 83(10): 943-951, doi: 10.1007/s00190-009-0311-8.
[10]  Williams S D P. CATS: GPS coordinate time series analysis software. GPS Solution, 2008, 12(2): 147-153.
[11]  Langbein J. Noise in GPS displacement measurements from Southern California and Southern Nevada. Journal of Geophysical Research, 2008, 113(B5): B05405, doi: 10.1029/2007JB005247.
[12]  Altamimi Z, Collilieux X, Legrand J, et al. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. Journal of Geophysical Research, 2007, 112(B9): B09401, doi: 10.1029/2007JB004949
[13]  Blewitt G. Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. Journal of Geophysical Research, 2003, 108(B2): B22103, doi: 10.1029/2002JB002082.
[14]  Williams S D P, Bock Y, Fang P, et al. Error Analysis of Continuous GPS position time series. Journal of Geophysical Research, 2004, 109((B3): B03412, doi: 10.1029/2003JB002741.
[15]  Meisel B, Angermann D, Krugel M. Influence of time variable effects in station positions on the terrestrial reference frame. Geodetic Reference Frames, 2009, 134: 89-93, doi: 10.1007/978-3-642-00860-3_14.
[16]  Petrov L, Boy J P. Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J. Geophys. Res., 2004, 109(B3): B03405, doi: 10.1029/2003JB002500.
[17]  van Dam T, Ray R. S1 and S2 Atmospheric Tide Loading Effects for Geodetic Applications. Updated October 2010, Data set/Moddel accessed YYYY-MM-DD at http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html.
[18]  Prawirodirdjo L, Ben Zion Y, Bock Y. Observation and modeling of thermoelastic strain in Southern California Integrated GPS Network daily position time series. J. Geophys. Res., 2006, 111: (B02408), doi: 10.1029/2005JB003716.
[19]  Dong D, Dickey J O, Chao Y, et al. Geocenter variations caused by atmosphere, ocean and surface ground water. Geophysical Research Letters, 1997, 24(15): 1867-1870.
[20]  Dong D, Yunck T, Heflin M. Origin of the International Terrestrial Reference Frame. Journal of Geophysical Research, 2003, 108(B4): B42200, doi: 10.1029/2002JB002035.
[21]  朱文耀, 符养, 李彦. GPS高程导出的全球高程振荡运动及季节变化. 中国科学(D辑), 2003, 33(5): 470-481. Zhu W Y, Fu Y, Li Y. Global elevation vibration and seasonal changes derived by the analysis of GPS height. Science in China: Series D, 2003, 46(8): 765-778.
[22]  Petit G, Luzum B. IERS Conventions 2010, IERS Technical Note 36, 2010, http://tai.bipm.org/iers/conv2010/.
[23]  李昭. GPS坐标时间序列的非线性变化研究. 武汉: 武汉大学, 2012. Li Z. Research on the non-linear variation of GPS coordinate time series. Wuhan: Wuhan University (in Chinese), 2012.
[24]  闫昊明, 陈武, 朱耀仲等. 温度变化对我国GPS台站垂直位移的影响. 地球物理学报, 2010, 53(4): 825-832, doi: 10.3969/j.issn.0001-5733.2010.04.007. Yan H M, Chen W, Zhu Y Z, et al. Thermal effects on vertical displacement of GPS stations in China. Chinese J. Geophys. (in Chinese), 2010, 53(4): 825-832, doi: 10.3969/j.issn.0001-5733.2010.04.007.
[25]  van Dam T, Altamimi Z, Collilieux X, et al. Topographically induced height errors in predicted atmospheric loading effects. J. Geophys. Res., 2010, 115: (B07415) doi: 10.1029/2009JB006810.
[26]  Jiang W P, Li Z, van Dam T, et al. Comparative analysis of different environmental loading methods and their impacts on the GPS height time series. Journal of Geodesy, 2013, doi: 10.1007/s00190-013-0642-3.
[27]  陈俊勇. 大地坐标框架理论和实践的进展. 大地测量与地球动力学, 2007, 27(1): 1-6. Chen J Y. Progress in theory and practice for geodetic reference coordinate frame. Journal of Geodesy and Geodynamics (in Chinese), 2007, 27(1): 1-6.
[28]  van Dam T M, Blewitt G, Heflin M B. Atmospheric pressure loading effects on global positioning system coordinate determinations. Journal of Geophysical Research, 1994, 99(B12): 23939-23950.
[29]  van Dam T M, Wahr J, Chao Y, et al. Predictions of crustal deformation and of geoid and sea-level variability caused by oceanic and atmospheric loading. Geophysical Journal International, 1997, 129(3): 507-517.
[30]  Zerbini S, Matonti F, Raicich F, et al. Observing and assessing nontidal ocean loading using ocean, continuous GPS and gravity data in the Adriatic area. Geophysical Research Letters, 2004, 31(23): L23609, doi: 10.1029/2004GL021185.
[31]  王敏, 沈正康, 董大南. 非构造形变对GPS连续站位置时间序列的影响和修正. 地球物理学报, 2005, 48(5): 1045-1052. Wang M, Shen Z K, Dong D N. Effects of non-tectonic crustal deformation on continuous GPS position time series and correction to them. Chinese J. Geophys. (in Chinese), 2005, 48(5): 1045-1052.
[32]  Kedar S, Hajj G A, Wilson B D, et al. The effect of the second order GPS ionospheric correction on receiver positions. Geophys. Res. Lett., 2003, 30(16): 1829, doi: 10.1029/2003GL017639.
[33]  Chen W, Gao S, Hu C W, et al. Effects of ionospheric disturbances on GPS observation in low latitude area. GPS Solutions, 2008, 12(1): 33-41, doi: 10.1007/s10291-007-0062-z.
[34]  Penna N T, Stewart M P. Aliased tidal signatures in continuous GPS height time series. Geophys. Res. Lett., 2003, 30(23): 2184, doi: 10.1029/2003GL018828.
[35]  Penna N T, King M A, Stewart M P. GPS height time series: Short-period origins of spurious long-period signals. J. Geophys. Res., 2006, 112(B2): B02402, doi: 10.1029/2005JB004047.
[36]  Stewart M P, Penna N T, Lichti D D. Investigating the propagation mechanism of unmodelled systematic errors on coordinate time series estimated using least squares. J. Geod., 2005, 79(8): 479-489, doi: 10.1007/s00190-005-0478-6.
[37]  Tregoning P, Herring T A. Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys. Res. Lett., 2006, 33(23): L23303, doi: 10.1029/2006GL027706.
[38]  Kouba J. Testing of Global Pressure/Temperature (GPT) model and global mapping function (GMF) in GPS analyses. J. Geod., 2009, 83(3-4): 199-208, doi: 10.1007/s00190-008-0229-6.
[39]  Steigenberger P, Rothacher M, Dietrich R, et al. Reprocessing of a global GPS network. J. Geophys. Res., 2006, 111(B5): B05402, doi: 10.1029/2005JB003747.
[40]  Langbein J. Noise in two-color electronic distance meter measurements revisited. Journal of Geophysical Research, 2004, 109(B4): B04406, doi: 10.1029/2003JB002819.
[41]  Farrell W E. Deformation of the Earth by Surface Loads. Reviews of Geophysics, 1972, 10(3): 761-797.
[42]  Tregoning P, van Dam T. Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. Journal of Geophysical Research, 2005, 110(B3): B03408, doi: 10.1029/2004JB003334.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133