全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

最优化辛格式广义离散奇异核褶积微分算子地震波场模拟

DOI: 10.6038/cjg20130731, PP. 2452-2462

Keywords: 辛格式,广义褶积微分算子,数值模拟,地震波场

Full-Text   Cite this paper   Add to My Lib

Abstract:

将波动方程变换至Hamilton体系,构造了一种新的保结构算法,即最优化辛格式广义褶积微分算子(OSGCD).在时间离散上,首先引入了Lie算子设计二级二阶辛格式,基于最小误差原理得到了优化的辛格式.在空间离散上,引入广义离散奇异核褶积微分算子计算空间微分,提出了一种有效方法优化GCD并得到了稳定的算子系数.针对本文发展的新方法,给出了OSGCD稳定性条件.在数值实验中,将OSGCD与多种方法比较,从精度和计算效率两方面分析了OSGCD的计算优势,计算结果也表明OSGCD长时程以及非均匀介质中地震波模拟亦具有较强能力.

References

[1]  Ruth R D. A canonical integration technique. IEEE Transactions on Nuclear Science, 1983, 30(4): 2669-2671.
[2]  李一琼, 李小凡, 朱童. 基于辛格式奇异核褶积微分算子的地震标量波场模拟. 地球物理学报, 2011, 54(7): 1827-1834. Li Y Q, Li X F, Zhu T. The seismic scalar wave field modeling by symplectic scheme and singular kernel convolutional differentiator. Chinese J. Geophys. (in Chinese), 2011, 54(7): 1827-1834.
[3]  李一琼, 李小凡, 张美根. 基于辛格式离散奇异褶积微分算子的弹性波场模拟. 地球物理学报, 2012, 55(5): 1725-1731. Li Y Q, Li X F, Zhang M G. The elastic wave fields modeling by symplectic discrete singular convolution differentiator method. Chinese J. Geophys. (in Chinese), 2012, 55(5): 1725-1731.
[4]  汪文帅, 李小凡. 一种新的三阶非力梯度辛积分算法. 武汉大学学报(理学版), 2012, 58(3): 221-228. Wang W S, Li X F. A new solution to the third-order non-gradient symplectic integration algorithm. J. Wuhan Univ. (Nat. Sci. Ed.) (in Chinese), 2012, 58(3): 221-228.
[5]  罗明秋, 刘洪, 李幼铭. 地震波传播的哈密顿表述及辛几何算法. 地球物理学报, 2001, 44(1): 120-128. Luo M Q, Liu H, Li Y M. Hamiltonian description and symplectic method of seismic wave propagation. Chinese J. Geophys. (in Chinese), 2001, 44(1): 120-128.
[6]  孙耿. 波动方程的一类显式辛格式. 计算数学, 1997, (1): 1-10. Sun G. A class of explicitly symplectic schemes for wave equations. Mathematica Numerica Sinica (in Chinese), 1997, (1): 1-10.
[7]  Ma X, Yang D H, Liu F Q. A nearly analytic symplectically partitioned Runge-Kutta method for 2-D seismic wave equations. Geophys. J. Int., 2011, 187(1): 480-496.
[8]  Li X F, Li Y Q, Zhang M G, et al. Scalar seismic-wave equation modeling by a multisymplectic discrete singular convolution differentiator method. Bull. Seism. Soc. Am., 2011, 101(4): 1710-1718.
[9]  冯康, 秦孟兆. 哈密尔顿系统的辛几何算法. 杭州: 浙江科学技术出版社, 2003. Feng K, Qin M Z. Symplectic Geometric Algorithm for Hamiltonian Systems (in Chinese). Hangzhou: Zhejiang Science & Technology Press, 2003.
[10]  Suzuki M. General theory of higher-order decomposition of exponential operators and symplectic integrators. Phys. Lett. A, 1992, 165(5-6): 387-395.
[11]  Dablain M A. The application of high-order differencing to the scalar wave equation. Geophysics, 1986, 51(1): 54-56.
[12]  Fei T, Larner K. Elimination of numerical dispersion in finite-difference modeling and migration by flux-corrected transport. Geophysics, 1995, 60(6): 1380-1842.
[13]  龙桂华, 李小凡, 张美根. 基于Shannon奇异核理论的褶积微分算子在地震波场模拟中的应用. 地球物理学报, 2009, 52(4): 1014-1024. Long G H, Li X F, Zhang M G. The application of convolutional differentiator in seismic modeling based on Shannon singular kernel theory. Chinese J. Geophys. (in Chinese), 2009, 52(4): 1014-1024.
[14]  Smith G D. Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford: Glarendon Press, 1978.
[15]  李信富, 李小凡. 地震波传播的褶积微分算子法数值模拟. 地球科学-中国地质大学学报, 2008, 33(6): 861-866. Li X F, Li X F. Numerical simulation of seismic wave propagation using convolutional differentiator. Earth Science-Journal of China University of Geosciences (in Chinese), 2008, 33(6): 861-866.
[16]  Berenger J. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 1994, 114(2): 185-220.
[17]  Xu J, Wu X. Several fourth-order force gradient symplectic algorithms. Research in Astronomy and Astrophysics, 2010, 10(2): 173-188.
[18]  Jo C H, Shin C, Suh J H. An optimal 9-point, finite-difference, frequency-space, 2-D Scalar wave extrapolator. Geophysics, 1996, 61(2): 529-537.
[19]  陈景波, 秦孟兆. 辛几何算法在射线追踪中的应用. 数值计算与计算机应用, 2000, 21(4): 254-265. Chen J B, Qin M Z. Ray tracing by symplectic algorithm. Journal of Numerical Methods and Computer Applications (in Chinese), 2000, 21(4): 254-265.
[20]  ?erveny V. Seismic Ray Theory. Cambridge: Cambridge University Press, 2001.
[21]  Li R, Wu X. Two new Fourth-order Three-stage symplectic integrators. Chin. Phys. Lett., 2011, 28(7): 070201, doi: 10.1088/0256-307X/28/7/070201.
[22]  Li R, Wu X. Application of the fourth-order three-stage symplectic integrators in chaos determination. Eur. Phys. J. Plus, 2011, 126(8): 73-80.
[23]  Casas F, Murua A. An efficient algorithm for computing the Baker-Campbell-Hausdorff series and some of its applications. Technical report, Universitat Jaume I, 2008.
[24]  张中杰, 滕吉文, 杨顶辉. 声波与弹性波场数值模拟中的褶积微分算子法. 地震学报, 1996, 18(1): 63-69. Zhang Z J. Teng J W. Yang D H. The convolutional differentiator method for numerical modeling of acoustic and elastic wave-field. Acta Seismologica Sinica (in Chinese), 1996, 18(1): 63-69.
[25]  戴志阳, 孙建国, 查显杰. 地震波场模拟中的褶积微分算子法. 吉林大学学报(地球科学版), 2005, 35(4): 520-524. Dai Z Y, Sun J G, Zha X J. Seismic wave field modeling with convolutional differentiator algorithm. Journal of Jilin University (Earth Science Edition) (in Chinese), 2005, 35(4): 520-524.
[26]  龙桂华, 赵宇波, 赵家福. 地震波数值模拟中的最优Shannon奇异核褶积微分算子. 地震学报, 2011, 33(5): 650-662. Long G H, Zhao Y B, Zhao J F. Optimal Shannon singular kernel convolutional differentiator in seismic wave modeling. Acta Seismologica Sinica (in Chinese), 2011, 33(5): 650-662.
[27]  Wei G W. Quasi wavelets and quasi interpolating wavelets. Chemical Physics Letters, 1998, 296(3-4): 215-220.
[28]  Qian L W. On the regularized Whittaker-kotel'' nikov-Shannon sampling formula. American Mathematical Society, 2002, 131(4): 1169-1176.
[29]  Iwatsu R. Two new solutions to the third-order symplectic integration method. Physics Letter A, 2009, 373(34): 3056-3060.
[30]  马啸, 杨顶辉, 张锦华. 求解声波方程的辛可分Runge-Kutta方法. 地球物理学报, 2010, 53(8): 1993-2003. Ma X, Yang D H, Zhang J H. Symplectic partitioned Runge-Kutta method for solving the acoustic wave equation. Chinese J. Geophys. (in Chinese), 2010, 53(8): 1993-2003.
[31]  Pao Y H, Varatharajulu V. Huygen''s principle, radiation conditions, and integral formulas for the scattering of elastic wave. J. Acoust. Soc. Am., 1976, 59(6): 1361-1371.
[32]  Ursin B. Review of elastic and electromagnetic wave propagation in horizontally layered media. Geophysics, 1983, 44(8): 1063-1081.
[33]  牟永光, 裴正林. 三维复杂介质地震数值模拟. 北京: 石油工业出版社, 2005. Mou Y G, Pei Z L. Seismic Numerical Modeling for 3-D Complex Media(in Chinese). Beijing: Petroleum Industry Press (in Chinese), 2005.
[34]  董良国, 马在田, 曹景忠. 一阶弹性波方程交错网格高阶差分解法稳定性研究. 地球物理学报, 2000, 43(6): 856-864. Dong L G, Ma Z T, Cao J Z. A study on stability of the staggered-grid high-order difference method of first-order elastic wave equation. Chinese J. Geophys. (in Chinese), 2000, 43(6): 856-864.
[35]  张美根, 王妙月, 李小凡等. 各向异性弹性波场的有限元数值模拟. 地球物理学进展, 2002, 17(3): 384-389. Zhang M G, Wang M Y, Li X F, et al. Finite element forward modeling of anisotropic elastic waves. Progress in Geophysics (in Chinese), 2002, 17(3): 384-389.
[36]  Gazdag J. Modeling of the acoustic wave equation with transform methods. Geophysics, 1981, 46(6): 854-859.
[37]  Komatitsch D. Spectral and spectral-element methods for the 2D and 3D elastodynamics equations in heterogeneous media. Paris, France: Institut de Physique du Globe, 1997.
[38]  Carcione J M, Herman G C, ten Kroode A P E. Seismic modeling. Geophysics, 2002, 67(4): 1304-1325.
[39]  Yang D H, Song G J, Lu M. Optimally accurate nearly analytic discrete scheme for wave-field simulation in 3D anisotropic media. Bull. Seism. Soc. Am., 2007, 97(5): 1557-1569.
[40]  Bayliss A, Jordan K E, Lemesurier B J, et al. A fourth-order accurate finite-difference scheme for the computation of elastic wave. Bull. Seism. Soc. Am., 1986, 76(4): 1115-1132.
[41]  Fornberg B. The Pseudospectral method: Comparisons with finite differences for the elastic wave equation. Geophysics, 1987, 52(4): 483-501.
[42]  Fornberg B. The Pseudospectral method: Accurate representation of interfaces in elastic wave calculations. Geophysics, 1988, 53(5): 625-637.
[43]  Li X F, Wang W S, Lu M W, et al. Structure-preserving modelling of elastic waves: a symplectic discrete singular convolution differentiator method. Geophys. J. Int., 2012, 188(3): 1382-1392.
[44]  Mora P. Elastic Finite Differences with Convolutional Operators. California: Stanford Exploration Project Report, 1986: 277-290.
[45]  Holberg O. Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena. Geophysical Prospecting, 1987, 35(6): 629-655.
[46]  Zhou B, Greenhalgh S. Seismic scalar wave equation modeling by a convolutional differentiator. Bull. Seism. Soc. Amer., 1992, 82(1): 289-303.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133