全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于修正拟牛顿公式的全波形反演

DOI: 10.6038/cjg20130730, PP. 2447-2451

Keywords: 修正BFGS算法,波形反演,Hessian矩阵,拟牛顿法

Full-Text   Cite this paper   Add to My Lib

Abstract:

波形反演是一种利用全波场信息,通过最小化预测波场和实际波场的残差来揭示地下岩性和构造信息的方法.本文首先简述了常规拟牛顿算法的原理,之后利用一种新的拟牛顿公式对Davidon-Fletcher-Powell(DFP)和Broyden-Fletcher-Goldfarb-Shanno(BFGS)算法进行了修正,改进后的BFGS算法在近似Hessian矩阵逆矩阵时,不仅考虑了梯度和模型信息,还加入了目标函数本身的信息,而且对于每次迭代,基本没有增加计算量.数值试验表明,相对常规拟牛顿方法,修正BFGS算法在保证反演精度的同时,明显提高了反演效率.

References

[1]  Bleibinhaus F, Hole J A, Ryberg T, et al. Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging. Journal of Geophysical Research, 2007, 112: B06315, doi: 10.1029/2006JB004611.
[2]  Operto S, Virieux J, Dessa J X, et al. Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: Application to the eastern Nankai trough. Journal of Geophysical Research, 2006, 111: B09306, doi: 10.1029/2005JB003835.
[3]  Sirgue L, Pratt R G. Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics, 2004, 69(1): 231-248.
[4]  李国平, 姚逢昌, 石玉梅等. 频率域叠前波动方程反演及其应用. 石油地球物理勘探, 2011, 46(3): 411-416. Li G P, Yao F C, Shi Y M, et al. Pre-stack wave equation inversion and its application in frequency domain. Oil Geophysical Prospecting (in Chinese), 2011, 46(3): 411-416.
[5]  Tarantola A. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 1984, 49(8): 1259-1266.
[6]  Pratt R G, Worthington M H. Inverse theory applied to multi-source cross-hole tomography. Part1: Acoustic wave-equation method. Geophysical Prospecting, 1990, 38(3): 287-310.
[7]  Zhang J Z, Xu C X. Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations. Journal of Computational and Applied Mathematics, 2001, 137(2): 269-278.
[8]  卞爱飞, 於文辉, 周华伟. 频率域全波形反演方法研究进展. 地球物理学进展, 2010, 25(3): 982-993. Bian A F, Yu W H, Zhou H W. Progress in the frequency-domain full waveform inversion method. Progress in Geophysics (in Chinese), 2010, 25(3): 982-993.
[9]  Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics, 2005.
[10]  刘璐,刘洪,刘红伟.优化15点频率-空间域有限差分正演模拟.地球物理学报,2013,56(2): 644-652. Liu L, Liu H, Liu H W. Optimal 15-point finite difference forward modeling in frequency-space domain. Chinese J. Geophys, 2013, 56(2):644-652.
[11]  Jo C H, Shin C, Suh J H. An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator. Geophysics, 1996, 61(2): 529-537.
[12]  Pratt R G, Shin C, Hicks G J. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion. Geophys. J. Int., 1998, 133(2): 341-362.
[13]  Virieus J, Operto S. An overview of full-waveform inversion in exploration geophysics. Geophysics, 2009, 74(6): WCC1, doi: 10.1190/1.3238367.
[14]  Brossier R, Operto S, Virieus J. Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion. Geophysics, 2009, 74(6): WCC105, doi: 10.1190/1.3215771.
[15]  Ma Y, Hale D. A projected Hessian matrix for full waveform inversion. 81st Annual International Meeting. SEG, Expanded Abstracts 30, 2011, 2401-2405.
[16]  Ma Y, Hale D. Full waveform inversion with image-guided gradient. 80th Annual International Meeting, SEG, Expanded Abstracts 29, 2010, 1003-1007.
[17]  Zhang J Z, Deng N Y, Chen L H. New quasi-Newton equation and related methods for unconstrained optimization. Journal of Optimization theory and applications, 1999, 102(1): 147-167.
[18]  Vigh D, Starr W E, Kapoor J. Developing earth models with full waveform inversion. The Leading Edge. 2009, 28(4): 432-435.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133