全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

针对深层流体识别的两项弹性阻抗反演与Russell流体因子直接估算方法研究

DOI: 10.6038/cjg20130724, PP. 2378-2390

Keywords: 深层储层,两项AVO近似,弹性阻抗方程,Russell流体因子,流体识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

Russell流体因子是判识深层储层含流体特征的敏感指示参数.针对深层地震资料缺失大角度入射信息以及信噪比普遍较低的特点,开展了基于贝叶斯理论框架的两项弹性阻抗反演与Russell流体因子直接估算方法研究.首先,在饱和孔隙弹性介质理论的指导下,推导了包含Russell流体因子和纵波阻抗参数的两项反射系数近似公式,并且进一步得到了新的两项弹性阻抗方程.其次通过模型的近似精度分析,验证了新弹性阻抗方程满足小角度近似精度要求.最后提出了贝叶斯弹性阻抗反演和Russell流体因子的直接估算方法,通过模型试算表明直接估算方法不仅充分利用了弹性阻抗反演的高抗噪性与实用性,并且有效的避免了间接累计误差对流体因子计算精度的影响,实际应用则进一步验证了直接估算的Russell流体因子可以提高深层储层流体识别的可靠性.

References

[1]  朱光友, 张水昌. 中国深层油气成藏条件与勘探潜力. 石油学报, 2009, 30(6): 793-802. Zhu G Y, Zhang S C. Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China. Acta Petrolei Sinica (in Chinese), 2009, 30(6): 793-802.
[2]  吴小洁, 顾汉明. 双相介质的AVO资料中蕴含的流体信息的定量分析. 地球物理学进展, 2009, 24(3): 1013-1018. Wu X J, Gu H M. Quantitative analysis of fluid information contained in seismic AVO data in porous media. Progress in Geophysics (in Chinese), 2009, 24(3): 1013-1018.
[3]  彭真明, 李亚林, 巫盛洪等. 碳酸盐岩储层多角度弹性阻抗流体识别方法. 地球物理学报, 2008, 51(3): 881-885. Peng Z M, Li Y L, Wu S H, et al. Discriminating gas and water using multi-angle extended elastic impedance inversion in carbonate reservoirs. Chinese J. Geophys. (in Chinese), 2008, 51(3): 881-885.
[4]  Yin X Y, Yuan S H, Zhang F C. Rock elastic parameters calculation from elastic impedance. CPS/SEG Technical Program Expanded Abstracts, 2004: 538-542.
[5]  杨培杰, 印兴耀. 非线性二次规划贝叶斯叠前反演. 地球物理学报, 2008, 51(6): 1876-1882. Yang P J, Yin X Y. Non-linear quadratic programming Bayesian prestack inversion. Chinese J. Geophys. (in Chinese), 2008, 51(6): 1876-1882.
[6]  宗兆云, 印兴耀, 吴国忱. 基于叠前地震纵横波模量直接反演的流体检测方法. 地球物理学报, 2012, 55(1): 284-292. Zong Z Y, Yin X Y, Wu G C. Fluid identification method based on compressional and shear modulus direct inversion. Chinese J. Geophys. (in Chinese), 2012, 55(1): 284-292.
[7]  Smith G C, Gidlow P M. Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting, 1987, 35(9): 993-1014.
[8]  Fatti J L, Smith G C, Vail P J, et al. Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the geostack technique. Geophysics, 1994, 59(9): 1362-1376.
[9]  Quakenbush M, Shang B, Tuttle C. Poisson impedance. The Leading Edge, 2006, 25(2): 128-138.
[10]  Russell B H, Hedlin K, Hilterman F J, et al. Fluid-property discrimination with AVO: A Biot-Gassmann perspective. Geophysics, 2003, 68(1): 29-39.
[11]  宁忠华, 贺振华, 黄德济. 基于地震资料的高灵敏度流体识别因子. 石油物探, 2006, 45(3): 239-242. Ning Z H, He Z H, Huang D J. High sensitive fluid identification based on seismic data. Geophysical Prospecting for Petroleum (in Chinese), 2006, 45(3): 239-242.
[12]  杨文采, 于常青. 深层油气地球物理勘探基础研究. 地球物理学进展, 2007, 22(4): 1238-1242. Yang W, Yu C Q. On basic research problems in applied geophysics for deep oil and gas fields. Progress in Geophysics (in Chinese), 2007, 22(4): 1238-1242.
[13]  程冰洁, 徐天吉, 李曙光. 频变AVO含气性识别技术研究与应用. 地球物理学报, 2012, 55(2): 608-613. Cheng B J, Xu T J, Li S G. Research and application of frequency dependent AVO analysis for gas recognition. Chinese J. Geophys. (in Chinese), 2012, 55(2): 608-613.
[14]  Russell B H, Gray D, Hampson D P. Linearized AVO and poroelasticity. Geophysics, 2011, 76(3): C19-C29.
[15]  郑静静, 印兴耀, 张广智. 流体因子关系分析以及新流体因子的构建. 地球物理学进展, 2011, 26(2): 579-587. Zheng J J, Yin X Y, Zhang G Z. Fluid factor analysis and the construction of the new fluid factor. Progress in Geophysics (in Chinese), 2011, 26(2): 579-587.
[16]  Goodway B, Chen T, Downton J. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters:"λρ","μρ", &"λ/μ fluid stack", from P and S inversions. 67th Annual International Meeting, SEG, Expanded Abstracts, 1997: 183-186.
[17]  Chi X G, Han D H. Fluid property discrimination by AVO inversion. 76th Annual International Meeting, SEG, Expanded Abstracts, 2006: 2052-2056.
[18]  王保丽, 印兴耀, 张繁昌. 基于Gray近似的弹性波阻抗方程及反演. 石油地球物理勘探, 2007, 42(4): 435-439. Wang B L, Yin X Y, Zhang F C. Gray approximation-based elastic wave impedance equation and inversion. Oil Geophysical Prospecting (in Chinese), 2007, 42(4): 435-439.
[19]  印兴耀, 张世鑫, 张繁昌等. 利用基于Russell近似的弹性波阻抗反演进行储层描述和流体识别. 石油地球物理勘探, 2010, 45(3): 373-380. Yin X Y, Zhang S X, Zhang F C, et al. Utilizing Russell Approximation-based elastic wave impedance inversion to conduct reservoir description and fluid identification. Oil Geophysical Prospecting (in Chinese), 2010, 45(3): 373-380.
[20]  Dillon L, Schwedersky G, Vásquez G, et al. A multiscale DHI elastic attributes evaluation. The Leading Edge, 2003, 22(10): 1024-1029.
[21]  Zhou Z Y, Hilterman F J. A comparison between methods that discriminate fluid content in unconsolidated sandstone reservoirs. Geophysics, 2010, 75(1): B47-B58.
[22]  李爱山, 印兴耀, 陆娜等. 两个角度弹性阻抗反演在中深层含气储层预测中的应用. 石油地球物理勘探, 2009, 44(1): 87-92. Li A S, Yin X Y, Lu N, et al. Application of elastic impedance inversion with two angle stack gathers to predict gas-bearing reservoir of mid-deep layer. Oil Geophysical Prospecting (in Chinese), 2009, 44(1): 87-92.
[23]  Connolly P. Elastic impedance. The Leading Edge, 1999, 18(4): 438-452.
[24]  Whitcombe D N. Elastic impedance normalization. Geophysics, 2002, 67(1): 60-62.
[25]  宗兆云, 印兴耀, 张繁昌. 基于弹性阻抗贝叶斯反演的拉梅参数提取方法研究. 石油地球物理勘探, 2011, 46(4): 598-604, 609. Zong Z Y, Yin X Y, Zhang F C. Elastic impedance Bayesian inversion for lame parameters extracting. Oil Geophysical Prospecting (in Chinese), 2011, 46(4): 598-604, 609.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133