全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

逆时偏移计算中的边界处理分析及应用

DOI: 10.6038/cjg20130624, PP. 2033-2042

Keywords: 逆时偏移,边界处理,吸收边界,记录波场边界,随机边界

Full-Text   Cite this paper   Add to My Lib

Abstract:

在地震资料的处理中,逆时偏移方法可以实现复杂构造高精度成像,但计算量和存储量两大问题影响了该方法的实际应用.逆时偏移算法中的边界处理方式的优化可以大大减少存储量,本文讨论了记录波场边界信息的吸收边界和随机边界这两种方法的计算效率和成像效果,提出了吸收边界中只记录边界范围内未衰减单层波场的方法并通过数值实验验证了其可行性,选择了不同的边界策略应用于模型数据和实际资料的处理.结果表明:记录单层波场边界信息的吸收边界的成像效果同传统存储波场历史的方式几乎无差别,但要额外存储每个时刻的波场边界信息;随机边界不需要额外存储波场信息,但会带来边界漫反射影响和计算区域的增加;记录单层波场边界可以明显减少存储量,并且不影响成像效果.

References

[1]  Baysal E, Kosloff D D, Sherwood J W C. Reverse time migration. Geophysics, 1983, 48(11): 1514-1524.
[2]  Whitmore N D. Iterative depth migration by backward time propagation. 53rd Annual International Meeting. SEG, Expanded Abstracts, 1983: 382-385.
[3]  Claerbou J F. Toward a unified theory of reflector mapping. Geophysics, 1971, 36(3): 467-481.
[4]  Zhu J M, Lines L R. Comparison of Kirchhoff and reverse-time migration methods with applications to prestack depth imaging of complex structures. Geophysics, 1998, 63(4): 1166-1176.
[5]  Biondi B, Shan G. Prestack imaging of overturned reflections by reverse time migration. 72nd Annual International Meeting. SEG, Expanded Abstracts, 2002.
[6]  Yoon K, Marfurt K J, Starr W. Challenges in reverse-time migration. 74th Annual International Meeting. SEG, Expanded Abstracts, 2004: 1057-1060.
[7]  Fricke J R. Reverse-time migration in parallel: a tutorial. Geophysics, 1988, 53(9): 1143-1150.
[8]  Zhang J H, Wang S Q, Yao Z X. Accelerating 3D Fourier migration with Graphics Processing Units. Geophysics, 2009, 74(6): 129-139.
[9]  刘红伟, 李博, 刘洪等. 地震叠前逆时偏移高阶有限差分算法及GPU实现. 地球物理学报, 2010, 53(7): 1725-1733. Liu H W, Li B, Liu H, et al. The algorithm of high order finite difference pre-stack reverse time migration and GPU implementation. Chinese J. Geophys. (in Chinese), 2010, 53(7): 1725-1733.
[10]  Baysal E, Kosloff D D, Sherwood J W C. A 2-way nonreflecting wave equation. Geophysics, 1984, 49(2): 132-141.
[11]  Symes W W. Reverse time migration with optimal checkpointing. Geophysics, 2007, 72(5): SM213-SM221.
[12]  Dussaud E, Symes W W, Williamson P, et al. Computational strategies for reverse-time migration. 78th Annual International Meeting. SEG, Expanded Abstracts, 2008, 27(1): 2267-2271.
[13]  Kindelan M, Aamel A, Sguazzero P. On the construction and efficiency of staggered numerical differentiators for the wave equation. Geophysics, 1990, 55(1): 107-110.
[14]  Liu Y K, Chang X, Jin D G, et al. Reverse time migration of multiples for subsalt imaging. Geophysics, 2011, 76(5): WB209-WB216.
[15]  Loewenthal D, Mufti I R. Reversed time migration in spatial frequency domain. Geophysics, 1983, 48(5): 627-635.
[16]  Loewenthal D, Stoffa P L, Faria E L. Suppressing the unwanted reflections of the full wave equation. Geophysics, 1987, 52(7): 1007-1012.
[17]  Liu F Q, Zhang G Q, Morton S A, et al. Reverse-time migration using one-way wavefield imaging condition. 77th Annual International Meeting. SEG, Expanded Abstracts, 2007: 2170-2174.
[18]  Liu F Q, Zhang G Q, Morton S A, et al. An effective imaging condition for reverse-time migration using wavefield decomposition. Geophysics, 2011, 76(1): S29-S39.
[19]  Zhang Y, Sun J. Practical issues of reverse time migration: true amplitude gathers, noise removal and harmonic-source encoding. 70th EAGE Conference & Exhibition, Rome, 2008.
[20]  杨仁虎, 常旭, 刘伊克. 叠前逆时偏移影响因素分析. 地球物理学报, 2010, 53(8): 1902-1913. Yang R H, Chang X, Liu Y K. The influence factors analyses of imaging precision in pre-stack reverse time migration. Chinses J. Geophys. (in Chinese), 2010, 53(8): 1902-1913.
[21]  杨仁虎. 复杂介质地震波传播与逆时偏移成像方法研究[博士学位论文]. 北京: 中国科学院研究生院, 2010. Yang R H. The study on seismic wave propagation and reverse time migration in complex media [Ph. D. thesis](in Chinese). Beijing: Graduate School of Chinese Academy of Sciences, 2010.
[22]  Clapp R G. Reverse time migration with random boundaries. 79th Annual International Meeting. SEG, Expanded Abstracts, 2009: 2809-2813.
[23]  Graves R W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bulletin of the Seismological Society of America, 1996, 86(4): 1091-1106.
[24]  Liu Y, Sen M K. An implicit staggered-grid finite-difference method for seismic modelling. Geophysical Journal International, 2009, 179(1): 459-474.
[25]  Collino F, Tsogka C. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics, 2001, 66(1): 294-307.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133