全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

地震资料中的多尺度断裂与流体响应特征:数值模拟分析

DOI: 10.6038/cjg20130621, PP. 2002-2011

Keywords: 多尺度断裂,流体响应,各向异性,频率,衰减

Full-Text   Cite this paper   Add to My Lib

Abstract:

流体在断裂和岩石骨架间的交换被认为是影响岩石弹性参数各向异性的主要原因,理论研究表明断裂尺度同样对弹性参数的各向异性也有影响.为了说明两者对各向异性影响以实现多尺度断裂裂隙的识别,本文在等效介质模型的基础上,应用数值分析的方法研究速度和衰减(1/Q)随多尺度断裂、频率和流体因子变化规律.结果表明介质弹性参数是频率依赖的,并且参数中存在衰减项,而这种频率依赖性与介质物性参数中的断裂尺度及流体性质存在一定的联系;当断裂定向分布时,参数结果显示为各向异性;不同断裂尺度具有不同的波速频散特性,剪切波分裂程度依赖于频率,断裂尺度起着控制作用,高频时对小尺度的敏感,低频段对大尺度敏感.在地震频段Thomsen参数随着频率的增大而减小,随着断裂尺寸的增大而减小.因此地震数据可能区分断裂和微裂隙引起各向异性,从而可测量断裂尺度.

References

[1]  Crampin S, Booth D C. Shear-wave polarizations near the North Anatolian Fault-II, Interpretation in terms of crack-induced anisotropy. Geophys. J. R Astron. Soc., 1985, 83(1): 75-92.
[2]  Schoenberg M. Elastic wave behavior across linear slip interfaces. Journal of the Acoustical Society of America, 1980, 68(5): 1516-1521.
[3]  Schoenberg M, Douma J. Elastic wave propagation in media with parallel fractures and aligned cracks. Geophys. Prospect., 1988, 36(6): 571-590.
[4]  Hudson J A. Wave speeds and attenuation of elastic waves in material containing cracks. Geophys. J. Int., 1981, 64(1): 133-150.
[5]  Hudson J A, Liu E, Crampin S. The mechanical properties of materials with interconnected cracks and pores. Geophys. J. Int., 1996, 124(1): 105-112.
[6]  Van der Kolk C M, Guest W S, Potters J H H M. The 3D shear experiment over the Natih field in Oman: the effect of fracture-filling fluids on shear propagation. Geophys. Prospect., 2001, 49(2): 179-197.
[7]  Chapman M. Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophys. Prospect., 2003, 51(5): 369-379.
[8]  Brown R J S, Korringa J. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics, 1975, 40(4): 608-616.
[9]  Chapman M, Maultzsch S, Liu E R, et al. The effect of fluid saturation in an anisotropic multi-scale equant porosity model. J. Appl. Geophys., 2003, 54(3-4): 191-202.
[10]  Chapman M, Liu E R, Li X Y. The influence of fluid sensitive dispersion and attenuation on AVO analysis. Geophysical Journal International, 2006, 167(1): 89-105.
[11]  何樵登, 张中杰. 横向各向同性介质中地震波及其数值模拟. 长春: 吉林大学出版社, 1996. He Q D, Zhang Z J. Wave in Transversely Isotropic Medium and Numerical Modelling (in Chinese). Changchun: Jilin University Press, 1996.
[12]  Zhang Z J, Teng J, Badal J, et al. Construction of regional and local seismic anisotropic structures from wide-angle seismic data: crustal deformation in the southeast of China. Journal of Seismology, 2009, 13(2): 241-252.
[13]  Yang D H, Wang S Q, Zhang Z J, et al. N-times absorbing bounding conditions for compact finite-difference modeling of acoustic and elastic wave propagation in the 2D TI medium. Bull. Seismol. Soc. Am., 2003, 93(6): 2389-2401.
[14]  Yang D H, Zhang Z J. Poroelastic wave equation including the Biot/Squirt mechanism and the solid/fluid coupling anisotropy. Wave Motion, 2002, 35(3): 223-245.
[15]  Nishizawa O. Seismic velocity anisotropy in a medium containing oriented cracks-transversely isotropic case. Journal of Physics of the Earth, 1982, 30(4): 331-347.
[16]  Thomsen L. Weak elastic anisotropy. Geophysics, 1986, 51(10): 1954-1966.
[17]  Thomsen L. Elastic anisotropy due to aligned cracks in porous rock. Geophys. Prospect., 1995, 43(6): 805-829.
[18]  Tod S R. The effects on seismic waves of interconnected nearly aligned cracks. Geophysical Journal International, 2001, 146(1): 249-263.
[19]  Chapman M, Zatsepin S V, Crampin S. Derivation of a microstructural poroelastic model. Geophys. J. Int., 2002, 151(2): 427-451.
[20]  Chapman M H. Modelling the wide-band laboratory response of rock samples to fluid and pressure changes. Edinburgh: University of Edinburgh, 2001.
[21]  Champan M. Modeling the effect of multiple sets of mesoscale fractures in porous rock on frequency-dependent anisotropy. Geophysics, 2009, 74(6): D97-D103.
[22]  张中杰, 滕吉文, 贺振华. EDA介质中地震波速度、衰减与品质因子方位异性研究. 中国科学(E辑), 1999, 29(6): 569-574. Zhang Z J, Teng J W, He Z H. The detection attenuation research on seismic wave velocity ''Attenuation'' quality factor of EDA medium. Science in China (Ser. E) (in Chinese), 2009, 29(6): 569-574.
[23]  张忠杰. 多分量地震资料的各向异性处理与解释方法. 哈尔滨: 黑龙江教育出版社, 2002. Zhang Z J. Multi-component Seismic Data Anisotropic Processing and Interpretation Methods (in Chinese). Harbin: Heilongjiang Education Press, 2002.
[24]  Zhang Z J, Wang G J, Harris J M. Multi-component wavefield simulation in viscous extensively dilatancy anisotropic media. Phys., Earth Planet. Inter., 1999, 114(1-2): 25-38.
[25]  Yang D H, Liu E R, Zhang Z J, et al. Finite-difference modelling in two-dimension anisotropic media using a flux-corrected transport technique. Geophys. J. Int., 2002, 148(2): 320-328.
[26]  Zheng H S, Zhang Z J, Liu E R. Non-linear seismic wave propagation in anisotropic media using the flux-corrected transport technique. Geophysical Journal International, 2006, 165(3): 943-956.
[27]  Yang D H, Zhang Z J. Effects of the Biot and the squirt-flow coupling interaction on anisotropic elastic waves. Chinese Science Bulletin, 2000, 45(23): 2130-2138.
[28]  Lan H Q, Zhang Z J. Seismic wavefield modeling in media with fluid-filled fractures and surface topography. Applied Geophysics, 2012, 9(3): 301-312.
[29]  徐涛, 徐果明, 高尔根等. 三维复杂介质的块状建模和试射射线追踪. 地球物理学报, 2004, 47(6): 1118-1126. Xu T, Xu G M, Gao E G, et al. Block modeling and shooting ray tracing in complex 3-D media. Chinese J. Geophys. (in Chinese), 2004, 47(6): 1118-1126.
[30]  Xu T, Xu G M, Gao E G, et al. Block modeling and segmentally iterative ray tracing in complex 3D media. Geophysics, 2006, 71(3): T41-T51.
[31]  Xu T, Zhang Z J, Gao E G, et al. Segmentally iterative ray tracing in complex 2D and 3D heterogeneous block models. Bull. Seismol. Soc. Am., 2010, 100(2): 841-850.
[32]  Liu K, Zhang Z J, Hu J F, et al. Frequency band-dependence of S-wave splitting in China mainland and its implications. Science in China (Series D), 2001, 44(7): 659-665.
[33]  Maultzsch S, Chapman M, Liu E R, et al. Modelling frequency-dependent seismic anisotropy in fluid-saturated rock with aligned fractures: implication of fracture size estimation from anisotropic measurements. Geophysical Prospecting, 2003, 51(5): 381-392.
[34]  Dvorkin J, Nur A. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 1993, 58(4): 524-533.
[35]  Tsvankin I. Anisotropic parameters and P-wave velocity for orthorhombic media. Geophysics, 1997, 62(4): 1292-1309.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133