Thompson R, Oldfield F. Environmental Magnetism. London: Alen and Unwin Ltd, 1986.
[2]
Liu Q S, Deng C L, Torrent J, et al. Review of recent developments in mineral magnetism of the Chinese loess. Quat Sci Rev, 2007, 26: 368-385.
[3]
刘秀明,夏敦胜,刘东生等. 中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨. 第四纪研究,2007, 27: 210-220. Liu X M, Xia D S, Liu T S, et al. Discussion of two models of paleoclimatic records of magnetic susceptibility of Alaskan and Chinese Loess. Quat Sci (in Chinese), 2007, 27, 210-220.
[4]
Liu X M, Liu T S, Xia D S, et al. Two pedogenic models for paleoclimatic records of magnetic susceptibility from Chinese and Siberian loess Science. Sci in Chin, 2007, 37: 1382-1391.
[5]
Rowan C J, Roberts A P, Broadbent T. Ruductive diagenesis, magnetite dissolution, Greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth Planet Sci Lett, 2009, 277: 223-235.
[6]
Martini I P, Cortizas A M, Chesworth W. Peatlands: evolution and records of environmental and climate changes. Oxford: Academic Press (Elsevier), 2006.
[7]
Blodau C. Carbon cycling in peatlands—A review of processes and controls. Environ Rev, 2002, 10: 111-134.
[8]
Frolking S, Roulet N. Holocene radiative forcing impact of northern peatland carbon zccumulation and methane emissions. Global Change Biol, 2007, 13: 1079-1088.
[9]
Belyea L, Malmer N, Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Global Change Biol, 2004: 10, 1043-1052.
[10]
Oldfield F, Tolonen K, Thompson R. History of particulate atmospheric pollution from magnetic measurements in dated Finnish peat profiles. Ambio, 1981, 10: 185-188.
[11]
Strzyszcz Z, Magiera T. Record of industrial pollution in polish ombrotrophic peat bogs. Phys. Chem. Earth, 2001, 26: 859-866.
[12]
Mighall T M, Foster I D L, Crew P, et al. Using mineral magnetism to characterize ironworking and to detect its evidence in peat bogs. J Archaeol Sci, 2009, 36: 130-139.
[13]
Berquó T S, Thompson R, Partiti C S M. Magnetic study of Brazilian peats from So Paulo state. Geoderma, 2004, 118: 233-243.
[14]
何报寅. 历史时期神农架地区气候变化的泥炭记录. 武汉:武汉大学历史地理研究所,2001. He B Y. Climate change record in peat from Shennongjia, China in history period. Wuhan: Historical Geography Research Institute of Wuhan University, 2001.
[15]
Williams M. Evidence for the dissolution of magnetite in recent Scottish peats. Quat Res, 1992, 37: 171-182.
[16]
Liu Q S, Deng C L, Yu Y J, et al. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols. Geophys. J. Int, 2005, 161: 102-112.
[17]
Verwey E J W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature, 1939, 144: 327-328.
[18]
Otsuka N Sato H. Observation of the Verwey transition in Fe3O4 by high-resolution electron microscopy. J Solid State Chem, 1986, 61: 212-222.
[19]
Roberts A P, Pike C P, Verosub K L. First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples. J Geophy Res, 2000, 105: 28461-28475.
[20]
Pike C R, Roberts A P, Dekkers M J, et al. An investigation of multi-domain hysteresis mechanisms using FORC diagrams. Phys Earth Plannet In, 2001, 126: 11-25.
[21]
Roberts A P, Cui Y, Verosub K L. Wasp-waisted hysteresis loops: mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J Geophys Res, 1995, 100: 17909-17924.
[22]
Tauxe L, Mullender T A T, Pick T P. Wasp-waists, and superparamagnetism in magnetic hysteresis. J Geophys Res, 1996, 101: 571-583.
[23]
Smirnov A V. Memory of the magnetic field applied during cooling in the low-temperature phase of magnetite: Grain size dependence. J Geophys Res, 2006, 111: 1-8.
[24]
魏海涛,夏敦胜,陈发虎等. 新疆表土磁学性质及其环境意义. 干旱区地理,2009, 32: 676-683. Wei H T, Xia D S, Chen F H, et al. Magnetic characteristics of surface soil and its significance in Xinjiang, China. Arid Land Geography (in Chinese), 2009, 32: 676-683.
[25]
Xia D S, Yang L P, Ma J Y, et al. Magnetic property of Lanzhou dustfall and its implication in urban pollution. Sci China Ser D-Earth Sci,2007, 50:1724-1732.
[26]
Rao V P, Kessarkar P M, Patil S K, et al. Rock magnetic and geochemical record in a sediment core from the eastern Arabian Sea: Diangenetic and environmental implications during the late Quaternary. Palaeoge, Palaeocl, Palaeoec, 2008, 270: 46-52.
[27]
Maher B A, Thompson R. Quaternary Climates, Environments and Magnetism. L ondon: Cambridge Univ Press, 1999.
[28]
Hodder A P W, De Lange P J, Lowe D J. Dissolution and depletion of ferromagnesian minerals from Holocene tephra layers in an acid bog, New Zealand, and implications for tephra correlation. J Quatern Sci, 1991, 6: 195-208.
[29]
Stumm W, Wehrli B, Wieland E. Surface complexation and its impact on geochemical kinetics. Croatia Chem. Acta, 1987, 60: 429-456.
[30]
Steinmann P, Shotyk W. Geochemistry, mineralogy, and geochemical mass balance on major elements in two peat bog profiles (Jura Moutains, Switzerland). Chem Geol, 1997, 138: 25-53.
[31]
Verosub K L, Roberts A P. Environmental magnetism: past, present and future. J Geophy Res, 1995, 100: 2175-2192.
[32]
Evans M E, Heller F. Environmental magnetism: Principles and Applications of Enviromagnetics. New York: Academic Press (Elsevier), 2003.
[33]
Hu S Y, Deng C L, Appel E, et al. Enviromental magnetic studies of lacustrine sediments. Chin Sci Bull, 2002, 47(7): 613-616.
[34]
Ao H, Deng C L, Dekkers M J, et al. Magnetic mineral dissolution in Pleistocene fluvio-lacustrine sediments, Nihewan Basin (North China). Earth Planet Sci Lett, 2010, 292: 191-200.
[35]
Rowan C J, Roberts A P. Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: unraveling complex magnetizations in Neogene marine sediments from New Zealand. Earth Planet Sci Lett, 2006: 119-137.
[36]
Prospero J M, Ginoux P, Torres O, et al. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS7 Total Ozone Mapping Spectrometer (TOMS) Aerosol Product. Rew Geophys, 2002, 40: 1-31.
[37]
Muxworthy A R, King J G, Heslop D.. Assessing the ability of first-order reversal curve (FORC) diagrams to unravel complex magnetic signals. J Geophys Res, 2005, 110: 1-11.
[38]
Dunlop D J, ?zdemir ?. Rock magnetism: Fundamentals and Frontiers, New York: Cambridge univ Press, 1997.
[39]
Dearing J. Environmental magnetic susceptibility. Using the Bartington M. British: British Library Cataloguing in Publication Data, 1999.
[40]
张俊辉,夏敦胜,张英等. 泥炭表层样品加热过程中磁学特性研究. 干旱区地理,2012, 35(6), 938-945. Zhang J H, Xia D S, Zhang Y, et al. Studies on magnetic properties during heating of the surface peat sediments. Arid Land Geography (in Chinese), 2012, 35(6), 938-945.
[41]
Kopp R E, Kirschvink J L. The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth-Sci Rev, 2008, 86: 42-61.
[42]
Moskowitz B M, Frankel R B, Bazylinski D A. Rock magnetic criteria for the detection of biogenic magnetite. Earth Planet Sci Lett, 1993, 120: 283-300.
[43]
Kosterov A. Low-temperature magnetization and AC susceptibility of magnetite: effect of thermomagnetic history. Geophys J Int, 2003, 154: 58-71.
[44]
Muxworthy A R, McClelland E. Review of the low-temperrature magnetic properties of magnetite from a rock magnetic perspective. Geophys J Int, 2000, 140: 101-114.
[45]
?zdemir ?, Dunlop D J. The effect of oxidation on the Verwey transition in magnetite. Geophys Res Lett, 1993, 10: 1671-1674.
[46]
Moskowitz B M. A comparision of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron reducing bacteria. Geophys Res Lett, 1989, 16: 665-668.
[47]
王丽,夏敦胜,余晔等. 北疆地区城市大气降尘磁学特征及其环境意义. 中国沙漠,2010, 30 (3): 699-705. Wang L, Xia D S, Yu Y, et al. Magnetic Properties of Urban Dustfall in North Xinjiang and Its Environmental Significance. Journal of Desert Research, 2010, 30(3): 699-705.
[48]
Karlin R, Levi S. Diagenesis of magnetic minerals in recent hemipelagic sediments. Nature, 1983, 303: 327-330.
[49]
Karlin R, Levi S. Geochemical and sedimentological control of the magnetic properties of hemipelagic sediments. J Geophys Res, 1985, 90: 373-392.
[50]
O''Loughlin E J, Gorski C A, Scherer M M, et al. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products. Envi Sci & Tech, 2010, 44: 4570-4576.
[51]
Henneberry Y K, Kraus T E C, Nico P S. Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions. Org Geochem, 2012, 48: 81-89.