全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

干旱区高山泥炭磁学特性研究

DOI: 10.6038/cjg20130619, PP. 1974-1984

Keywords: 泥炭沉积,磁学,磁铁矿,氧化还原环境

Full-Text   Cite this paper   Add to My Lib

Abstract:

对干旱区高山—新疆阿尔泰山中段连续的泥炭沉积序列进行详细系统的磁学分析,获得泥炭沉积物中磁性矿物的类型、含量以及粒径大小等磁学特性,探讨了在富含大量有机质的氧化还原条件下磁性矿物的保存与变化机理.岩石磁学结果表明沉积物中亚铁磁性矿物的富集程度低,磁性较弱.主要含有磁铁矿、赤铁矿、顺磁性矿物以及大量的抗磁性矿物组分,并且证实泥炭沉积物中不可能含有生物成因的趋磁细菌.沉积物的磁性颗粒主要以细颗粒为主,但同时还存在粗颗粒成分.研究结果指示在泥炭表层酸性的亚氧环境中,亚铁磁性矿物在较短的时间内伴随着部分溶解和改造,导致沉积物磁性浓度的降低和粒径的减小,快速的沉积和埋藏之后,长期处于缺氧的碱性还原环境下,磁铁矿发生的变化很小或基本不会再次被改造.

References

[1]  Thompson R, Oldfield F. Environmental Magnetism. London: Alen and Unwin Ltd, 1986.
[2]  Liu Q S, Deng C L, Torrent J, et al. Review of recent developments in mineral magnetism of the Chinese loess. Quat Sci Rev, 2007, 26: 368-385.
[3]  刘秀明,夏敦胜,刘东生等. 中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨. 第四纪研究,2007, 27: 210-220. Liu X M, Xia D S, Liu T S, et al. Discussion of two models of paleoclimatic records of magnetic susceptibility of Alaskan and Chinese Loess. Quat Sci (in Chinese), 2007, 27, 210-220.
[4]  Liu X M, Liu T S, Xia D S, et al. Two pedogenic models for paleoclimatic records of magnetic susceptibility from Chinese and Siberian loess Science. Sci in Chin, 2007, 37: 1382-1391.
[5]  Rowan C J, Roberts A P, Broadbent T. Ruductive diagenesis, magnetite dissolution, Greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth Planet Sci Lett, 2009, 277: 223-235.
[6]  Martini I P, Cortizas A M, Chesworth W. Peatlands: evolution and records of environmental and climate changes. Oxford: Academic Press (Elsevier), 2006.
[7]  Blodau C. Carbon cycling in peatlands—A review of processes and controls. Environ Rev, 2002, 10: 111-134.
[8]  Frolking S, Roulet N. Holocene radiative forcing impact of northern peatland carbon zccumulation and methane emissions. Global Change Biol, 2007, 13: 1079-1088.
[9]  Belyea L, Malmer N, Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Global Change Biol, 2004: 10, 1043-1052.
[10]  Oldfield F, Tolonen K, Thompson R. History of particulate atmospheric pollution from magnetic measurements in dated Finnish peat profiles. Ambio, 1981, 10: 185-188.
[11]  Strzyszcz Z, Magiera T. Record of industrial pollution in polish ombrotrophic peat bogs. Phys. Chem. Earth, 2001, 26: 859-866.
[12]  Mighall T M, Foster I D L, Crew P, et al. Using mineral magnetism to characterize ironworking and to detect its evidence in peat bogs. J Archaeol Sci, 2009, 36: 130-139.
[13]  Berquó T S, Thompson R, Partiti C S M. Magnetic study of Brazilian peats from So Paulo state. Geoderma, 2004, 118: 233-243.
[14]  何报寅. 历史时期神农架地区气候变化的泥炭记录. 武汉:武汉大学历史地理研究所,2001. He B Y. Climate change record in peat from Shennongjia, China in history period. Wuhan: Historical Geography Research Institute of Wuhan University, 2001.
[15]  Williams M. Evidence for the dissolution of magnetite in recent Scottish peats. Quat Res, 1992, 37: 171-182.
[16]  Liu Q S, Deng C L, Yu Y J, et al. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols. Geophys. J. Int, 2005, 161: 102-112.
[17]  Verwey E J W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature, 1939, 144: 327-328.
[18]  Otsuka N Sato H. Observation of the Verwey transition in Fe3O4 by high-resolution electron microscopy. J Solid State Chem, 1986, 61: 212-222.
[19]  Roberts A P, Pike C P, Verosub K L. First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples. J Geophy Res, 2000, 105: 28461-28475.
[20]  Pike C R, Roberts A P, Dekkers M J, et al. An investigation of multi-domain hysteresis mechanisms using FORC diagrams. Phys Earth Plannet In, 2001, 126: 11-25.
[21]  Roberts A P, Cui Y, Verosub K L. Wasp-waisted hysteresis loops: mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J Geophys Res, 1995, 100: 17909-17924.
[22]  Tauxe L, Mullender T A T, Pick T P. Wasp-waists, and superparamagnetism in magnetic hysteresis. J Geophys Res, 1996, 101: 571-583.
[23]  Smirnov A V. Memory of the magnetic field applied during cooling in the low-temperature phase of magnetite: Grain size dependence. J Geophys Res, 2006, 111: 1-8.
[24]  魏海涛,夏敦胜,陈发虎等. 新疆表土磁学性质及其环境意义. 干旱区地理,2009, 32: 676-683. Wei H T, Xia D S, Chen F H, et al. Magnetic characteristics of surface soil and its significance in Xinjiang, China. Arid Land Geography (in Chinese), 2009, 32: 676-683.
[25]  Xia D S, Yang L P, Ma J Y, et al. Magnetic property of Lanzhou dustfall and its implication in urban pollution. Sci China Ser D-Earth Sci,2007, 50:1724-1732.
[26]  Rao V P, Kessarkar P M, Patil S K, et al. Rock magnetic and geochemical record in a sediment core from the eastern Arabian Sea: Diangenetic and environmental implications during the late Quaternary. Palaeoge, Palaeocl, Palaeoec, 2008, 270: 46-52.
[27]  Maher B A, Thompson R. Quaternary Climates, Environments and Magnetism. L ondon: Cambridge Univ Press, 1999.
[28]  Hodder A P W, De Lange P J, Lowe D J. Dissolution and depletion of ferromagnesian minerals from Holocene tephra layers in an acid bog, New Zealand, and implications for tephra correlation. J Quatern Sci, 1991, 6: 195-208.
[29]  Stumm W, Wehrli B, Wieland E. Surface complexation and its impact on geochemical kinetics. Croatia Chem. Acta, 1987, 60: 429-456.
[30]  Steinmann P, Shotyk W. Geochemistry, mineralogy, and geochemical mass balance on major elements in two peat bog profiles (Jura Moutains, Switzerland). Chem Geol, 1997, 138: 25-53.
[31]  Verosub K L, Roberts A P. Environmental magnetism: past, present and future. J Geophy Res, 1995, 100: 2175-2192.
[32]  Evans M E, Heller F. Environmental magnetism: Principles and Applications of Enviromagnetics. New York: Academic Press (Elsevier), 2003.
[33]  Hu S Y, Deng C L, Appel E, et al. Enviromental magnetic studies of lacustrine sediments. Chin Sci Bull, 2002, 47(7): 613-616.
[34]  Ao H, Deng C L, Dekkers M J, et al. Magnetic mineral dissolution in Pleistocene fluvio-lacustrine sediments, Nihewan Basin (North China). Earth Planet Sci Lett, 2010, 292: 191-200.
[35]  Rowan C J, Roberts A P. Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: unraveling complex magnetizations in Neogene marine sediments from New Zealand. Earth Planet Sci Lett, 2006: 119-137.
[36]  Prospero J M, Ginoux P, Torres O, et al. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS7 Total Ozone Mapping Spectrometer (TOMS) Aerosol Product. Rew Geophys, 2002, 40: 1-31.
[37]  Muxworthy A R, King J G, Heslop D.. Assessing the ability of first-order reversal curve (FORC) diagrams to unravel complex magnetic signals. J Geophys Res, 2005, 110: 1-11.
[38]  Dunlop D J, ?zdemir ?. Rock magnetism: Fundamentals and Frontiers, New York: Cambridge univ Press, 1997.
[39]  Dearing J. Environmental magnetic susceptibility. Using the Bartington M. British: British Library Cataloguing in Publication Data, 1999.
[40]  张俊辉,夏敦胜,张英等. 泥炭表层样品加热过程中磁学特性研究. 干旱区地理,2012, 35(6), 938-945. Zhang J H, Xia D S, Zhang Y, et al. Studies on magnetic properties during heating of the surface peat sediments. Arid Land Geography (in Chinese), 2012, 35(6), 938-945.
[41]  Kopp R E, Kirschvink J L. The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth-Sci Rev, 2008, 86: 42-61.
[42]  Moskowitz B M, Frankel R B, Bazylinski D A. Rock magnetic criteria for the detection of biogenic magnetite. Earth Planet Sci Lett, 1993, 120: 283-300.
[43]  Kosterov A. Low-temperature magnetization and AC susceptibility of magnetite: effect of thermomagnetic history. Geophys J Int, 2003, 154: 58-71.
[44]  Muxworthy A R, McClelland E. Review of the low-temperrature magnetic properties of magnetite from a rock magnetic perspective. Geophys J Int, 2000, 140: 101-114.
[45]  ?zdemir ?, Dunlop D J. The effect of oxidation on the Verwey transition in magnetite. Geophys Res Lett, 1993, 10: 1671-1674.
[46]  Moskowitz B M. A comparision of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron reducing bacteria. Geophys Res Lett, 1989, 16: 665-668.
[47]  王丽,夏敦胜,余晔等. 北疆地区城市大气降尘磁学特征及其环境意义. 中国沙漠,2010, 30 (3): 699-705. Wang L, Xia D S, Yu Y, et al. Magnetic Properties of Urban Dustfall in North Xinjiang and Its Environmental Significance. Journal of Desert Research, 2010, 30(3): 699-705.
[48]  Karlin R, Levi S. Diagenesis of magnetic minerals in recent hemipelagic sediments. Nature, 1983, 303: 327-330.
[49]  Karlin R, Levi S. Geochemical and sedimentological control of the magnetic properties of hemipelagic sediments. J Geophys Res, 1985, 90: 373-392.
[50]  O''Loughlin E J, Gorski C A, Scherer M M, et al. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products. Envi Sci & Tech, 2010, 44: 4570-4576.
[51]  Henneberry Y K, Kraus T E C, Nico P S. Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions. Org Geochem, 2012, 48: 81-89.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133