全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

云南地区地壳速度结构的层析成像研究

DOI: 10.6038/cjg20130613, PP. 1904-1914

Keywords: 云南地区,地震层析成像,地壳速度结构,哀牢山&mdash,红河断裂

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用地震波到时和体波层析成像方法反演了云南地区的P波速度结构,根据不同深度的速度异常分析了主要断裂和区域动力作用的深部效应,揭示出壳内低速层的分布范围以及与下地壳流动的联系.研究结果表明,哀牢山—红河断裂两侧的地壳速度结构存在明显的差异,滇中地区的速度异常分布与小江断裂、元谋断裂、程海断裂等南北走向的断裂一致,反映了青藏东部地壳块体顺时针旋转产生的构造效应;滇西南的速度异常分布与哀牢山—红河断裂、无量山断裂、澜沧江等断裂的走向平行,显示了印支块体朝东南方向挤出产生的影响;沿着南汀河断裂分布的低速异常则与印缅块体侧向挤压引起的构造活动有关.壳内低速异常具有分层和分区特征:在哀牢山—红河断裂西侧和澜沧江之间主要分布在地壳中上部,在小江断裂和元谋断裂附近分布在地壳中下部,在滇中地区则广泛分布于地壳底部至莫霍面附近,东、西两侧分别受到小江断裂和哀牢山—红河断裂的限制.其中攀西地区的低速异常与小江断裂和元谋断裂在此附近交汇形成的热流传输通道以及张裂时期强烈的壳幔热交换有关;在哀牢山—红河和澜沧江地区,除了印支块体向东南方向的挤出之外,印缅块体的侧向挤压和向东俯冲也对地壳深部的构造变形产生了一定的影响,由此引发的地幔上涌将导致热流物质沿着断裂通道进入地壳形成低速层.因此,哀牢山—红河断裂不仅在地壳浅部是分隔印支块体和华南块体的地质界限,也是控制两侧区域深部构造变形和壳内韧性流动的分界.

References

[1]  Lei J S, Zhao D P, Su Y J. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res., 2009, 114(B5): B05302, doi: 10.1029/2008JB005881.
[2]  Liu Y K, Chang X, He J K, et al. Three-dimensional velocity images of the crust and upper mantle beneath the north-south zone in China. Bull. Seism. Soc. Am., 2005, 95(3): 916-925.
[3]  吴建平, 明跃红, 王椿镛. 云南数字地震台站下方的S波速度结构研究. 地球物理学报, 2001, 44(2): 228-237. Wu J P, Ming Y H, Wang C Y. The S wave velocity structure beneath digital seismic stations of Yunnan province inferred from teleseismic receiver function modelling. Chinese J. Geophys. (in Chinese), 2001, 44(2): 228-237.
[4]  Hu J F, Su Y J, Zhu X G, et al. S-wave velocity and Poisson''s ratio structure of crust in Yunnan and its implication. Sci. China Ser. D: Earth Sci., 2005, 48(2): 210-218.
[5]  Hu S B, He L J, Wang J Y. Heat flow in the continental area of China: a new data set. Earth Planet. Sci. Lett., 2000, 179(2): 407-419.
[6]  马宏生, 汪素云, 裴顺平等. 川滇及周边地区地壳横波衰减的成像研究. 地球物理学报, 2007, 50(2): 465-471. Ma H S, Wang S Y, Pei S P, et al. Q0 tomography of S wave attenuation in Sichuan-Yunnan and adjacent regions. Chinese J. Geophys. (in Chinese), 2007, 50(2): 465-471.
[7]  Lev E, Long M D, Van der Hilst R D. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth Planet. Sci. Lett., 2006, 251(3-4): 293-304.
[8]  Flesch L, Holt W, Silver P, et al. Constraining the extent of crust–mantle coupling in central Asia using GPS, geologic, and shear wave splitting data. Earth Planet. Sci. Lett., 2005, 238(1-2): 248-268.
[9]  胥颐, 钟大赉, 刘建华. 滇西地区壳幔解耦与腾冲火山区岩浆活动的深部构造研究. 地球物理学进展, 2012, 27(3): 846-855, doi: 10.6038/j.issn.1004-2903.2012.03.003. Xu Y, Zhong D L, Liu J H. Constraints of deep structures on the crust-mantle decoupling in the western Yunnan and the magma activity in the Tengchong volcanic area. Progress in Geophys. (in Chinese), 2012, 27(3): 846-855. doi: 10.6038/j.issn.1004-2903.2012.03.003.
[10]  Zhong D L, Ding L, Liu F T, et al. Multi-oriented and layered structures of lithosphere in orogenic belt and their effects on Cenozoic magmatism—A case study of western Yunnan and Sichuan, China. Sci. China, Ser. D: Earth Sci., 2000, 43(Supp): 122-133.
[11]  Royden L H, Burchfiel B C, King R W, et al. Surface deformation and lower crustal flow in eastern Tibet. Science, 1997, 276(5313): 788-790.
[12]  Wang C Y, Lou H, Silver P G, et al. Crustal structure variation along 30°N in the eastern Tibetan Plateau and its tectonic implications. Earth Planet. Sci. Lett., 2010, 289(3-4): 367-376.
[13]  Liang C T, Song X D, Huang J L. Tomographic inversion of Pn travel times in China. J. Geophys. Res., 2004, 109(B11): B11304, doi: 10.1029/2003JB002789.
[14]  Kennett B L N, Engdahl E R, Buland R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 1995, 122(1): 108-124.
[15]  Zhang X, Wang Y H. Crustal and upper mantle velocity structure in Yunnan, Southwest China. Tectonophysics, 2009, 471(3-4): 171-185.
[16]  Bai D H, Unsworth M J, Meju M A, et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 2010, 3(5): 358-362, doi:10.1038/ngeo830.
[17]  Huang J L, Zhao D P, Zheng S H. Lithospheric structure and its relationship to seismic and volcanic activity in southwest China. J. Geophys. Res., 2002, 107(B10): ESE13-1-ESE13-14, doi: 10.1029/2000JB000137.
[18]  Wang C Y, Chan W W, Mooney W D. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications. J. Geophys. Res., 2003, 108(B9): 2442, doi: 10.1029/2002JB001973.
[19]  Xu Y, Liu J H, Liu F T, et al. Crust and upper mantle structure of the Ailao Shan-Red River fault zone and adjacent regions. Sci. China Ser. D: Earth Sci., 2005, 48(2): 156-164.
[20]  Yao H J, Beghein C, Van der Hilst R D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure. Geophys. J. Int., 2008, 173(1): 205-219.
[21]  Huang R Q, Wang Z, Pei S P, et al. Crustal ductile flow and its contribution to tectonic stress in Southwest China. Tectonophysics, 2009, 473(3-4): 476-489.
[22]  Xu Z J, Song X D. Joint inversion for crustal and Pn velocities and Moho depth in Eastern Margin of the Tibetan Plateau. Tectonophysics, 2010, 491(1-4): 185-193.
[23]  Xu L L, Rondenay S, Van der Hilst R D. Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Phys. Earth Planet. Int., 2007, 165(3-4): 176-193.
[24]  Li Y H, Wu Q J, Zhang R Q, et al. The crust and upper mantle structure beneath Yunnan from joint inversion of receiver functions and Rayleigh wave dispersion data. Phys. Earth Planet. Int., 2008, 170(1-2): 134-146.
[25]  Gao X, Su Y L, Wang W M, et al. Lower-crust S-wave velocity beneath western Yunnan Province from waveform inversion of dense seismic observations. Terra Nova, 2009, 21(2): 105-110.
[26]  张晓曼, 胡家富, 胡毅力等. 云南壳幔S波速度结构与强震的构造背景. 地球物理学报, 2011, 54(5): 1222-1232. Zhang X M, Hu J F, Hu Y L, et al. The S-wave velocity structure in the crust and upper mantle as well as the tectonic setting of strong earthquake beneath Yunnan region. Chinese J. Geophys. (in Chinese), 2011, 54(5): 1222-1232.
[27]  常利军, 王椿镛, 丁志峰. 云南地区SKS波分裂研究. 地球物理学报, 2006, 49(1): 197-204. Chang L J, Wang C Y, Ding Z F. A study on SKS splitting beneath the Yunnan region. Chinese J. Geophys. (in Chinese), 2006, 49(1): 197-204.
[28]  Huang Z C, Wang L S, Xu M J, et al. Shear wave splitting across the Ailao Shan-Red River fault zone, SW China. Geophys. Res. Lett., 2007, 34(20): L20301.
[29]  Wang Y. Heat flow pattern and lateral variations of lithosphere strength in China mainland: constraints on active deformation. Phys. Earth Planet. Int., 2001, 126(3-4): 121-146.
[30]  胡家富, 丛连理, 苏有锦等. 云南及周边地区Lg尾波Q值的分布特征. 地球物理学报, 2003, 46(6): 809-813. Hu J F, Cong L L, Su Y J, et al. Distribution characteristics of Q value of the Lg coda in Yunnan and its adjacent regions. Chinese J. Geophys. (in Chinese), 2003, 46(6): 809-813.
[31]  Bassin C, Laske G, Masters G. The current limits of resolution for surface wave tomography in North America. EOS Trans. AGU, 2000, 81: F897.
[32]  Paige C C, Saunders M A. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw., 1982, 8(1): 43-71.
[33]  滕吉文. 康滇构造带岩石圈物理与动力学. 北京: 科学出版社, 1994. Teng J W. Lithospheric Physics and Dynamics of the Kang-Dian Tectonic Zone. Beijing: Science Press (in Chinese), 1994.
[34]  Shen Z K, Lü J G, Wang M, et al. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res., 2005, 110: B11409, doi: 10.1029/2004 JB003421.
[35]  Gan W J, Zhang P Z, Shen Z K, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res., 2007, 112(B8): B08416, doi: 10.1029/2005 JB004120.
[36]  Schoenbohm L M, Burchfiel B C, Chen L Z. Propagation of surface uplift, lower crustal flow, and Cenozoic tectonics of the southeast margin of the Tibetan Plateau. Geology, 2006, 34(10): 813-816, doi: 10.1130/G22679.1.
[37]  钱晓东, 秦嘉政, 刘丽芳. 云南地区现代构造应力场研究. 地震地质, 2011, 33(1): 91-106. Qian X D, Qin J Z, Liu L F. Study on recent tectonic stress field in Yunnan region. Seismology and Geology (in Chinese), 2011, 33(1): 91-106.
[38]  徐鸣洁, 王良书, 刘建华等. 利用接收函数研究哀牢山—红河断裂带地壳上地幔特征. 中国科学(D辑: 地球科学), 2005, 35(8): 729-737. Xu M J, Wang L S, Liu J H, et al. Crust and uppermost mantle structure of the Ailaoshan-Red River fault from receiver function analysis. Sci. China, Ser. D: Earth Sci., 2005, 49(10): 1043-1052.
[39]  Pan W, Wang L S, Mi N, et al. Crustal thickness and average Vp/Vs ratio variations in southwest Yunnan, China, from teleseismic receiver functions. J. Geophys. Res., 2010, 115(B11): B11308, doi: 10.1029/2009JB006651.
[40]  Tapponnier P, Lacassin R, Leloup P H, et al. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and south China. Nature, 1990, 343(6257): 431-437.
[41]  Leloup P H, Harrison T M, Ryerson F J, et al. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan. J. Geophys. Res.,1995, 98(B4): 6175-6743.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133