全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海水物性对地震反射系数的相对贡献

DOI: 10.6038/cjg20130632, PP. 2123-2132

Keywords: 地震海洋学,相对贡献,南海,地中海涡旋

Full-Text   Cite this paper   Add to My Lib

Abstract:

地震剖面与海水物性之间的关系是地震海洋学亟待研究的关键问题之一.本文选取地中海涡旋、各大洋不同纬度和南海东北部不同月份的三组CTD资料,按海域、季节和深度对法向相对贡献进行计算和分析,并从地中海涡旋CTD资料中选取典型温盐界面进行非法向相对贡献的研究.结果表明声速和温度的平均法向相对贡献随着海域、季节和深度呈相似性变化,其变化范围主要由相邻海水团之间的物性差异决定,分别为78%~94%和74%~98%.声速和温度(密度和盐度)的非法向相对贡献随着入射角的增加而增大(减小).用于反演的叠前地震数据应尽量包含较宽入射角范围的道集,特别是对于相对贡献较小的密度和盐度,包含小入射角的地震道对提高反演结果的精度尤为重要.通过对比地中海涡旋的Turner角剖面和相对贡献结果,发现Turner角对相对贡献具有很好的指示作用,其密度和盐度相对贡献较大的区域对应于Turner角为-45°的双稳定区域与扩散对流区域的边界附近,在此区域的密度比为零或较小.南北极附近海域的密度比较小,从而导致高纬度站位出现声速和温度相对贡献偏小的现象.南海东北部冬季表层海水的温度和声速相对贡献偏大则可能是由于黑潮侵入导致海水层温度差异及密度比变大引起.

References

[1]  Noguchi T, Niino H, Nakamura Y, et al. Thermohaline interleaving in the Kuroshio Extension Front: Seismic reflection imagery and in situ measurements. In: Eos Trans. AGU, Ocean Sci. Meet., Suppl., Abstract, 2006, 87(36):OS14I-06.
[2]  White N, Koenitz D, Hobbs R. Seismic imaging of the Antarctic Circumpolar Current near Drake Passage. In: Eos Trans. AGU, Ocean Sci. Meet., Suppl., Abstract, 2006, 87(36):OS14I-04.
[3]  Pinheiro L M, Song H B, Ruddick B R, et al. Detailed 2-D imaging of the Mediterranean Outflow and Meddies off W Iberia from multichannel seismic data. In: Eos Trans. AGU, Ocean Sci. Meet., Suppl., Abstract, 2006, 87(36):OS13I-02.
[4]  Páramo P, Holbrook W S. Temperature contrasts in the water column inferred from amplitude-versus-offset analysis of acoustic reflections. Geophys. Res. Lett., 2005, 32(24): L24611, doi: 10.1029/2005GL024533.
[5]  Wood W T, Holbrook W S, Sen M K, et al. Full waveform inversion of reflection seismic data for ocean temperature profiles. Geophys. Res. Lett., 2008, 35(4): L04608, doi: 10.1029/2007GL032359.
[6]  Ruddick B, Song H B, Dong C Z, et al. Water column seismic images as maps of of temperature gradient. Oceanography, 2009, 22(1): 192-205.
[7]  Sallarès V, Biescas B, Buffett G, et al. Relative contribution of temperature and salinity to ocean acoustic reflectivity. Geophys. Res. Lett., 2009, 36(24): L00D06, doi: 10.1029/2009GL040187.
[8]  殷八斤, 曾灏, 杨在岩. AVO技术的理论与实践. 北京: 石油工业出版社, 1995. Yin B J, Zeng H, Yang Z Y. Theory and Practice of AVO Technology (in Chinese). Beijing: Petroleum Industry Press, 1995.
[9]  Armi L, Hebert D, Oakey N, et al. Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr., 1989, 19(3): 354-370.
[10]  Su J L. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Continental Shelf Research, 2004, 24(16): 1745-1760.
[11]  Liu Q Y, Kaneko A, Su J L. Recent progress in studies of the South China Sea Circulation. J. Oceanogr., 2008, 64(5): 753-762.
[12]  Holbrook W S, Paramo P, Pearse S, et al. Thermohaline fine structure in an oceanographic front from seismic reflection profiling. Science, 2003, 301(5634): 821-824.
[13]  Nandi P, Holbrook W S, Pearse S, et al. Seismic reflection imaging of water mass boundaries in the Norwegian Sea. Geophys. Res. Lett., 2004, 31(23): L23321, doi: 10.1029/2004GL021325.
[14]  Tsuji T, Noguchi T, Niino H, et al. Two-dimensional mapping of fine structures in the Kuroshio Current using seismic reflection data. Geophys. Res. Lett., 2005, 32(14): L14609, doi: 10.1029/2005GL023095.
[15]  Klaeschen D, Papenberg C, Reston T, et al. Seismic images and properties of a Meddy. In: Eos Trans. AGU, Ocean Sci. Meet., Suppl., Abstract, 2006, 87(36):OS13I-03.
[16]  Biescas B, Sallares V, Pelegri J L, et al. Imaging meddy finestructure using multichannel seismic reflection data. Geophys. Res. Lett., 2008, 35(11): L11609, doi: 10.1029/2008GL033971.
[17]  Pinheiro L M, Song H B, Ruddick B, et al. Detailed 2-D imaging of the Mediterranean outflow and meddies off W iberia from multichannel seismic data. Journal of Marine Systems, 2010, 79(1-2): 89-100, doi: 10.1016/j.jmarsys.2009.07.004.
[18]  宋海斌, Pinheiro L M, 王东晓等. 海洋中尺度涡与内波的地震图像. 地球物理学报, 2009, 52(11): 2775-2780, doi: 10.3969/j.issn.0001-5733.2009.11.012. Song H B, Pinheiro L M, Wang D X, et al. Seismic images of ocean meso-scale eddies and internal waves. Chinese J. Geophys. (in Chinese), 2009, 52(11): 2775-2780, doi: 10.3969/j.issn.0001-5733.2009.11.012.
[19]  Holbrook W S, Fer I. Ocean internal wave spectra inferred from seismic reflection transects. Geophys. Res. Lett., 2005, 32(15): L15604, doi: 10.1029/2005GL023733.
[20]  Krahmann G, Brandt P, Klaeschen D, et al. Mid-depth internal wave energy off the Iberian Peninsula estimated from seismic reflection data. J. Geophys. Res., 2008, 113(C12): C12016, doi: 10.1029/2007JC004678.
[21]  董崇志, 宋海斌, 郝天珧等. 南海东北部海洋内波的反射地震研究. 地球物理学报, 2009, 52(8): 2050-2055, doi: 10.3969/j.issn.00015733.2009.08.013. Dong C Z, Song H B, Hao T Y, et al. Studying of oceanic internal wave spectra in the Northeast South China Sea from seismic reflections. Chinese J. Geophys. (in Chinese), 2009, 52(8): 2050-2055, doi: 10.3969/j.issn.00015733.2009.08.013.
[22]  宋海斌, 拜阳, 董崇志等. 南海东北部内波特征——经验模态分解方法应用初探. 地球物理学报, 2010, 53(2): 393-400, doi: 10.3969/j.issn.0001-5733.2010.02.001. Song H B, Bai Y, Dong C Z, et al. A preliminary study of application of Empirical Mode Decomposition method in understanding the features of internal waves in the northeastern South China Sea. Chinese J. Geophys. (in Chinese), 2010, 53(2): 393-400, doi: 10.3969/j.issn.0001-5733.2010.02.001.
[23]  Fer I, Nandi P, Holbrook W S, et al. Seismic imaging of a thermohaline staircase in the western tropical Atlantic. Ocean Science, 2010, 6(3): 621-631.
[24]  Ambar I, Bezerra R, Pinheiro L M, et al. Thermohaline staircases viewed by contemporaneous seismic imaging. 1st ESF. Exploratory Workshop on Seismic Oceanography. November, 19-21, 2008. Begur, Girona (Spain) http://www.cmima.csic.es/files/sow/IAmbar.pdf, 2008.
[25]  Sheen K L, White N J, Hobbs R W. Estimating mixing rates from seismic images of oceanic structure. Geophys. Res. Lett., 2009, 36(24): L00D04, doi: 10.1029/2009GL040106.
[26]  Millero F J, Chen C T, Bradshaw A, et al. A new high pressure equation of state for seawater. Deep Sea Res., 1980, 27(3-4): 255-264.
[27]  Fofonoff N P, Millard R C Jr. Algorithms for Computation of Fundamental Properties of Seawater. Greenberg: Unesco Tech. Pap. in Mar. Sci., 1983.
[28]  Aki K, Richards P G. Quantitative Seismology-Theory and Methods. San Francisco: W. H. Freeman and Co., 1980.
[29]  Ruddick B. A practical indicator of the stability of the water column to double-diffusive activity. Deep Sea Res., 1983, 30(10): 1105-1107.
[30]  胡筱敏, 熊学军, 乔方利等. 利用漂流浮标资料对黑潮及其 邻近海域表层流场及其季节分布特征的分析研究. 海洋学报, 2008, 30(6): 1-16. Hu X M, Xiong X J, Qiao F L, et al. Surface current field and seasonal variability in the Kuroshio and adjacent regions derived from satellite-tracked drifter data. Acta Oceanologica Sinica (in Chinese), 2008, 30(6): 1-16.
[31]  鲍献文, 鞠霞, 吴德星. 吕宋海峡120°E断面水交换特征. 中国海洋大学学报(自然科学版), 2009, 39(1): 1-6, 76. Bao X W, Ju X, Wu D X. Characteristics of water exchange across 120oE Section in the Luzon Strait. Period. Ocean Univ. China (in Chinese), 2009, 39(1): 1-6, 76.
[32]  Tian J W, Yang Q X, Zhao W. Enhanced diapycnal mixing in the South China Sea. J. Phys. Oceanogr., 2009, 39(12): 3191-3203.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133