全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

六种不同变质程度煤的最大镜质组反射率与弹性参数的关系

DOI: 10.6038/cjg20130631, PP. 2116-2122

Keywords: ,镜质组反射率,煤阶,弹性模量,相关

Full-Text   Cite this paper   Add to My Lib

Abstract:

煤镜质组反射率是评价煤阶、区分煤种的重要参数之一,在煤层气勘探与开发、采煤、化工和冶金中有着重要的应用.以往煤阶的评价单纯通过巷道和钻孔取芯的煤样实验室测试分析获得,受取样点有限限制.本文通过6种不同变质程度煤的挥发分和镜质组最大反射率的测试,配合煤样的超声弹性测量,探讨了镜质组最大反射率与地震属性参数—波速、密度和弹性模量之间的相关性.研究发现:煤镜质组最大反射率与地震属性参数均存在较好的线性正相关,其中以密度与纵波速度的相关程度最高.从而为利用煤田地震预测镜质组最大反射率,进而预测煤阶的三维立体分布提供了试验与物理依据.

References

[1]  杨金和, 陈文敏, 段云龙. 煤炭化验手册. 北京: 煤炭工业出版社, 2004: 759-767. Yang J H, Chen W M, Duan Y L. Coal Test Manual (in Chinese). Beijing: Coal Industry Press, 2004: 759-767.
[2]  陈鹏. 中国煤炭性质、分类和利用. 第二版. 北京: 化学工业出版社, 2001: 80-88. Chen P. Property, Classification and Utilization of Coal in China. 2nd ed (in Chinese). Beijing: Chemical Industry Press, 2001: 80-88.
[3]  Annual Book of ASTM Standards, Vol.5.05, American Society for Testing and Materials, Philadephia, PA, 1986.
[4]  李文华, 白向飞, 杨金和等. 烟煤镜质组平均最大反射率与煤种之间的关系. 煤炭学报, 2006, 31(3): 342-345. Li W H, Bai X F, Yang J H, et al. Correspondence between mean maximum reflectance of vitrinite and classification of bituminous coals. Journal of China Coal Society (in Chinese), 2006, 31(3): 342-345.
[5]  周师庸, 赵俊国. 炼焦煤性质与高炉焦炭质量. 北京: 冶金工业出版社, 2005: 221-223. Zhou S Y, Zhao J G. The Character of Coking Coal and the Quality of Coke for Blast Furnace (in Chinese). Beijing: Metallurgical Industry Press, 2005: 221-223.
[6]  Barker C E, Pawlewicz M J. The correlation of Vitrinite reflectance with maximum temperature in humic organic matter. Paleogeothermics: Lecture Notes in Earth Science, 1986, 5: 79-93.
[7]  张守仁, 曹代勇, 陈佩佩等. 高煤阶煤的阶跃性演化机理研究. 煤炭学报, 2002, 27(5): 525-528. Zhang S R, Cao D Y, Chen P P, et al. Study on the step evolution mechanism of high-rank coal. Journal of China Coal Society (in Chinese), 2002, 27(5): 525-528.
[8]  Kozusniková A. Determination of Microhardness and Elastic Modulus of Coal Components by Using Indentation Method. Geolines (in Chinese), 2009, 22: 40-43.
[9]  GB/474-2008, 《煤样的制备方法》. 中华人民共和国国家质量监督检验检疫总局(中国国家标准化管理委员会), 2008: 1-13. GB/474-2008, method for preparation of coal sample. General Administration of Quality Supervision, Inspection and Quarantine of the People''s Republic of China, 2008: 1-13 (in Chinese).
[10]  GB/T6949-1998, 《煤的视相对密度测定方法》. 国家质量技术监督局, 1998: 1-4. GB/T6949-1998, Determination of apparent relative density of coal. General Administration of Quality Supervision of the People''s Republic of China, 1998: 1-4 (in Chinese).
[11]  GB/T212-2008, 《煤的工业分析方法》. 中华人民共和国国家质量监督检验检疫总局(中国国家标准化管理委员会), 2008: 1-18. GB/T212-2008, Proximate analysis of coal. General Administration of Quality Supervision, Inspection and Quarantine of the People''s Republic of China, 2008: 1-18 (in Chinese).
[12]  何元金, 马兴昆. 近代物理实验. 北京: 清华大学出版社, 2003: 198-206. He Y J, Ma X K. The Modern Physics Experiment (in Chinese). Beijing: Tsinghua University Press, 2003: 198-206.
[13]  伍向阳. 石油流体中声波速度及其相关性质研究[博士学位论文]. 北京: 中国科学院地球物理研究所, 2000: 31. Wu X Y. Study on acoustic wave and related property in petroleum fluid (in Chinese)[Ph. D. thesis]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Science, 2000: 31.
[14]  王赟, 许小凯, 张玉贵. 六种不同变质程度煤的纵横波速度特征及其与密度的关系. 地球物理学报, 2012, 55(11): 3754-3761. Wang Y, Xu X K, Zhang Y G. Characteristics of P-wave and S-wave velocities and their relationships with density of six metamorphic kinds of coals. Chinese J. Geophys. (in Chinese), 2012, 55(11): 3754-3761.
[15]  胡德绥. 弹性波动力学. 北京: 地质出版社, 1989. Hu D S. The Dynamics of the Elastic Wave (in Chinese). Beijing: Geological Publishing House, 1989.
[16]  马劲风. 地震勘探中广义弹性阻抗的正反演. 地球物理学报, 2003, 46(1): 118-124. Ma J F. Forward modeling and inversion method of generalized elastic impedance in seismic exploration. Chinese J. Geophys. (in Chinese), 2003, 46(1): 118-124.
[17]  席道瑛, 徐松林, 周城光等. 用非强迫共振法研究饱和岩石的黏弹性响应. 岩石力学与工程学报, 2012, 31(4): 688-695. Xi D Y, Xu S L, Zhou C G, et al. Study of viscoelastic behavior of saturated rocks by using non-forced resonance method. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 2012, 31(4): 688-695.
[18]  Krevelen D W. Coal Science. Amsterdam: Elsevier Publishing Co., 1961.
[19]  虞继舜. 煤化学. 北京: 冶金工业出版社, 2000: 110. Yu J S. Chemistry of Coal. Beijing: Metallurgical Industry Press, 2000: 110.
[20]  Pan Z J, Connell L D. Modelling of anisotropic coal swelling and its impact on permeability behaviour for primary and enhanced coalbed methane recovery. International Journal of Coal Geology, 2011, 85(3-4): 257-267.
[21]  孙占学, 张文, 胡宝群等. 沁水盆地大地热流与地温场特征. 地球物理学报, 2006, 49(1): 130-134. Sun Z X, Zhang W, Hu B Q, et al. Features of heat flow and the geothermal field of the Qinshui Basin. Chinese J. Geophys. (in Chinese), 2006, 49(1): 130-134.
[22]  潘一山, 唐巨鹏, 李成全. 煤层中气水两相运移的NMRI试验研究. 地球物理学报, 2008, 51(5): 1620-1626. Pan Y S, Tang J P, Li C Q. NMRI test on two-phase transport of gas-water in coal seam. Chinese J. Geophys. (in Chinese), 2008, 51(5): 1620-1626.
[23]  蒋建平, 高广运, 康继武. 镜质组反射率测试及其所反映的构造应力场. 地球物理学报, 2007, 50(1): 128-137. Jiang J P, Gao G Y, Kang J W. Tests on vitrinite reflectance of coal and analysis of tectonic stress field. Chinese J. Geophys. (in Chinese), 2007, 50(1): 138-145.
[24]  张关泉, 屠浩敏. 层状弹性介质的波阻抗反演. 地球物理学报, 1995, 38(S1): 81-93. Zhang G Q, Tu H M. Impedance inversion for elastic layered media. Acta Geophysica Sinica Chinese J. Geophys. (in Chinese), 1995, 38(S1): 81-93.
[25]  彭真明, 李亚林, 巫盛洪等. 碳酸盐岩储层多角度弹性阻抗流体识别方法. 地球物理学报, 2008, 51(3): 881-885. Peng Z M, Li Y L, Wu S H, et al. Discriminating gas and water using multi-angle extended elastic impedance inversion in carbonate reservoirs. Chinese J. Geophys. (in Chinese), 2008, 51(3): 881-885.
[26]  Morcote A, Mavko G, Prasad M. Dynamic elastic properties of coal. Geophysics, 75(6): E227-E234.
[27]  张建利, 王赟, 张玉贵. 一种提高煤样横波超声测量精度的方法. 煤炭学报, 2013,38(7):(in Press). Zhang J L, Wang Y, Zhang Y G. A new method for improving the S-wave ultrasonic-test accuracy of coal samples. Journal of China Coal Society (in Chinese), 2013,38(7):(in press).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133