全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大地水准面高对InSAR大范围地壳形变监测的影响分析

DOI: 10.6038/cjg20130608, PP. 1857-1867

Keywords: 雷达干涉测量,宽幅InSAR,大地水准面高,地壳形变,阿尔金断裂带

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于InSAR数据处理所用的WGS84参考椭球系统与通用的DEM高程系统(EGM96大地水准参考面)不一致,在InSAR形变监测分析中会引入大地水准面高导致的误差.本文利用覆盖青藏高原北部阿尔金断裂带西段的27景EnvisatASAR宽幅模式数据和44景条带模式数据,研究了大地水准面高与InSAR大范围形变测量不确定性的关系:(1)模拟分析表明对于100m的垂直基线,8.8m的DEM测量误差,若研究区域存在20m的大地水准面高的变化,对宽幅或条带模式InSAR形变测量造成的影响将由3mm增至10mm左右;(2)实例验证表明对于不同的研究区域,大地水准面高与该地区地形变化存在较大相关性,对于同一研究区域,垂直基线的大小决定了大地水准面高对InSAR不确定性的影响程度;(3)对于大地水准面高有较大梯度变化的研究区域,组合短基线方法与去除轨道平面的方法难以消除大地水准面高的影响.使用基于WGS84高程系统的DEM,可以为InSAR形变测量分析提供统一的高程基准,有效避免大地水准面高误差的影响.

References

[1]  Guccione P. Interferometry with ENVISAT wide swath ScanSAR data. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 377-381.
[2]  Koch K R. Parameter Estimation and Hypothesis Testing in Linear Models, 2nd Ed. Berlin, Germany: Springer Verlag, 1999.
[3]  Taylor M, Yin A. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere, 2009, 5(3): 199-214.
[4]  Jiménez-Munt I, Fernàndez M, Vergés J, et al. Lithosphere structure underneath the Tibetan Plateau inferred from elevation, gravity and geoid anomalies. Earth and Planetary Science Letters, 2008, 267(1-2): 276-289.
[5]  Guarnieri A M, Prati C. ScanSAR focusing and interferometry. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4): 1029-1038.
[6]  Zhang P-Z, Shen Z, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 2004, 32(9): 809-812.
[7]  Wessel P, Smith W H F. New, improved version of generic mapping tools released. Eos Trans. AGU, 1998, 79(47): 579-579.
[8]  Li Z, Muller J P, Cross P, et al. Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. Journal of Geophysical Research, 2005, 110(B3): B03410.
[9]  Li Z H, Pasquali P, Cantone A, et al. MERIS atmospheric water vapor correction model for wide swath interferometric synthetic aperture radar. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 257-261.
[10]  Wang H, Wright T J. Satellite geodetic imaging reveals internal deformation of western Tibet. Geophysical Research Letters, 2012, 39(7): L07303.
[11]  Hammond W C, Blewitt G, Li Z, et al. Contemporary uplift of the Sierra Nevada, western United States, from GPS and InSAR measurements. Geology, 2012, 40(7): 667-670.
[12]  Liu P, Li Z H, Hoey T, et al. Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 253-264.
[13]  Wang H, Wright T J, Yu Y P, et al. InSAR reveals coastal subsidence in the Pearl River Delta, China. Geophysical Journal International, 2012, 191(3): 1119-1128.
[14]  Cigna F, Osmano?lu B, Cabral-Cano E, et al. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sensing of Environment, 2012, 117: 146-161.
[15]  许文斌, 李志伟, 丁晓利等. 利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数. 地球物理学报, 2012, 55(2): 452-461. Xu W B, Li Z W, Ding X L, et al. Application of small baseline subsets D-InSAR technology to estimate the time series land deformation and aquifer storage coefficients of Los Angeles area. Chinese J. Geophys. (in Chinese), 2012, 55(2): 452-461.
[16]  Shen Z K, Sun J B, Zhang P, et al. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nature Geoscience, 2009, 2(10): 718-724.
[17]  Hu J, Li Z W, Ding X L, et al. Derivation of 3-D coseismic surface displacement fields for the 2011 Mw9.0 Tohoku-Oki earthquake from InSAR and GPS measurements. Geophysical Journal International, 2013, 192(2): 573-585.
[18]  Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.
[19]  Hooper A, Zebker H, Segall P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 2004, 31(23): L23611.
[20]  Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
[21]  Elliott J R, Biggs J, Parsons B, et al. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophysical Research Letters, 2008, 35(L12309): 1-5.
[22]  Baker S, Amelung F. Top-down inflation and deflation at the summit of Kīlauea Volcano, Hawaii observed with InSAR. Journal of Geophysical Research: Solid Earth, 2012, 117(B12): B12406.
[23]  Gourmelen N, Kim S W, Shepherd A, et al. Ice velocity determined using conventional and multiple-aperture InSAR. Earth and Planetary Science Letters, 2011, 307(1-2): 156-160.
[24]  Pritchard M E, Simons M. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature, 2002, 418(6894): 167-171.
[25]  Wen Y M, Li Z H, Xu C J, et al. Postseismic motion after the 2001 MW7.8 Kokoxili earthquake in Tibet observed by InSAR time series. Journal of Geophysical Research, 2012, 117(B8), B08405.
[26]  Holzner J, Bamler R. Burst-mode and ScanSAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(9): 1917-1934.
[27]  Ortiz A B, Zebker H. ScanSAR-to-stripmap mode interferometry processing using ENVISAT/ASAR Data. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3468-3480.
[28]  Tong X P, Sandwell D T, Fialko Y. Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of InSAR GPS and field data. Journal of Geophysical Research, 2010, 115(B04314): 1-19.
[29]  Tobita M, Nishimura T, Kobayashi T, et al. Estimation of coseismic deformation and a fault model of the 2010 Yushu earthquake using PALSAR interferometry data. Earth and Planetary Science Letters, 2011, 307(3-4): 430-438.
[30]  Hofmann-Wellenhof B, Moritz H. Physical Geodesy, 2nd ed. New York: Springer, 2006.
[31]  Li P, Shi C, Li Z H, et al. Evaluation of ASTER GDEM using GPS benchmarks and SRTM in China. International Journal of Remote Sensing, 2013, 34(5): 1744-1771.
[32]  Li P, Shi C, Li Z, et al. Evaluation of ASTER GDEM ver2 Using GPS Measurements and SRTM ver4. 1 in China.//ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, I-4: 181-186.
[33]  Rosen P A, Hensley S, Peltzer G, et al. Updated repeat orbit interferometry package released. EOS Trans. AGU, 2004, 85(5): 47.
[34]  Liang C, Zeng Q M, Jia J Y, et al. ScanSAR interferometric processing using existing standard InSAR software for measuring large scale land deformation. Computers & Geosciences, 2013, 51: 439-448.
[35]  Rosich B, Monti-Guarnieri A, D''Aria D, et al. ASAR wide swath mode interferometry: Optimisation of the scan pattern synchronization.//Proc. Envisat Symposium 2007(ESA SP-636), Montreux, Switzerland, 2007.
[36]  Sandwell D T, Myer D, Mellors R, et al. Accuracy and resolution of ALOS interferometry: Vector deformation maps of the father''s day intrusion at kilauea. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3524-3534.
[37]  李振洪, 刘经南, 许才军. InSAR数据处理中的误差分析. 武汉大学学报(信息科学版), 2004, 29(1): 72-76. Li Z H, Liu J N, Xu C J. Error analysis in InSAR data processing. Geomatics and Information Science of Wuhan University (in Chinese), 2004, 29(1): 72-76.
[38]  张赤军, 骆鸣津, 方剑等 青藏高原大地水准面异常的解释与场源效应初探. 中国科学(地球科学), 2011, 41(8): 1126-1133. Zhang C J, Luo M J, Fang J, et al. The interpretation of Qinghai-Tibet Plateau geoid anomaly and primary research in its field effect. Sci. Sin. Terrae. (in Chinese), 2011, 41: 1126-1133.
[39]  Ricard Y, Fleitout L, Froidevaux C. Geoid heights and lithospheric stresses for a dynamic Earth. Annales Geophysicae, 1984, 2(3): 267-286.
[40]  Hager B H, Richards M A. Long-wavelength variations in Earth''s geoid: Physical models and dynamical implications. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1989, 328(1599): 309-327.
[41]  Jarvis A, Reuter H I, Nelson A, et al. Hole-filled SRTM for the globe Version 4. available from the CGIAR-CSI SRTM 90m Database (http://srtm csi.cgiar.org), 2008.
[42]  Wright T J, Parsons B, England P C, et al. InSAR observations of low slip rates on the major faults of Western Tibet. Science, 2004, 305(5681): 236-239.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133