全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TTI介质qP波逆时偏移中伪横波噪声压制方法

DOI: 10.6038/cjg20130627, PP. 2065-2076

Keywords: TTI介质,逆时偏移,伪横波噪声压制,qP-qSV波波动方程,声学近似方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

在对地下复杂构造介质,特别是盐丘侧翼及岩下区域进行成像时,相对于传统的各向同性逆时偏移和VTI逆时偏移,具有倾斜对称轴的TTI逆时偏移成像效果最优.不仅反射同相轴更加的连续,而且能量得到了更好的聚焦.传统的各向异性介质全弹性波RTM的计算量大且计算效率低.由于目前仍以纵波勘探为主,因此TTI逆时偏移qP波波动方程的选取显得尤为重要.为了提高计算效率,采用将沿着对称轴方向的横波速度设为零的方法,简化得到qP波波动方程.然而,这样会引入一种严重影响成像效果的低速度、低振幅的qSV波人为干扰.本文建立了qP波方程的完全匹配层控制方程,而后借助于辅助波场采用一种高效的压制伪横波噪声传播的方法,通过模型测试验证了该方法的有效性.

References

[1]  Kie H, Toro W. A new acoustic wave equation for modeling in anisotropic media. SEG Expanded Abstracts, 2001: 1171-1174.
[2]  Du X, Bancroft J C, Lines L R. Reverse-time migration for tilted TI media. SEG Expanded Abstracts. 2005: 1930-1933.
[3]  Pestana R C, Stoffa P L. Time evolution of the wave equation using rapid expansion method. Geophysics, 2010, 75(4): T121-T131.
[4]  Pestana R C, Ursin B, Stoffa P L. Separate P- and SV-wave equations for VTI media. 2011 SEG Annual Meeting, Society of Exploration Geophysicists, 2011: 163-167.
[5]  Chu C L, Macy B K. An accurate and stable wave equation for pure acoustic TTI modeling: 81st Annual International Meeting, SEG, Expanded Abstracts, 2011: 179-184.
[6]  Liu F Q, Morton S A, Jiang S S, et al. Decoupled wave equations for P- and SV-waves in an acoustic VTI media: 79th Annual International Meeting, SEG, Expanded Abstracts, 2009, 28:2844-2848.
[7]  Zhou H Z, Zhang G Q. Removing S-wave noise in TTI reverse time migration: 79th Annual International Meeting, SEG, Expanded Abstracts, 2009: 2849-2853.
[8]  Guan H, Dussaud E. Techniques for an efficient implementation of RTM in TTI media: 81st Annual International Meeting, SEG, Expanded Abstracts, 2011: 3393-3397.
[9]  黄翼坚, 朱光明, 刘池洋. 一个近似的VTI介质声波方程. 地球物理学报, 2011, 54(8): 2117-2123. Huang Y J, Zhu G M, Liu C Y. An approximate acoustic wave equation for VTI media. Chinese J. Geophys. (in Chinese), 2011, 54(8): 2117-2123.
[10]  Tsvankin I. P-wave signatures and notation for transversely isotropic media: An overview. Geophysics, 1996, 61(2): 467-483.
[11]  Clayton R W, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of America, 1977, 67(6): 1529-1540.
[12]  Kosloff R, Kosloff D. Absorbing boundaries for wave propagation problems. Journal of Computational Physics, 1986, 63(2): 363-376.
[13]  Tsvankin I. Seismic signatures and analysis of reflection data in anisotropic media. New York: Elsevier, 2001.
[14]  Yan J, Sava P. Elastic wavefield separation for VTI media: 78th Annual International Meeting, SEG, Expanded Abstracts, 2008: 2191-2195.
[15]  Yoon K, Sang S, Jean J, et al. Stability and speedup issues in TTI RTM implementation: 80th Annual International Meeting, SEG, Expanded Abstracts, 2010: 3221-3225.
[16]  Ekkehart T. Reverse-time migration in TTI media: 80th Annual International Meeting, SEG, Expanded Abstracts, 2010: 3193-3197.
[17]  Zhang Y, Zhang H Z, Zhang G. A stable TTI reverse time migration and its implementation: 79th Annual International Meeting, SEG, Expanded Abstracts, 2009: 2794-2798.
[18]  Jin S W, Jiang F, Ren Y Q, et al. Comparison of isotropic, VTI and TTI reverse time migration: an experiment on BP anisotropic benchmark dataset: 80th Annual International Meeting, SEG, Expanded Abstracts, 2010: 3198-3203.
[19]  Zhang L B, Rector J W III, Hoversten G M. An acoustic wave equation for modeling in tilted Ti media: 73rd Annual International Meeting, SEG, Expanded Abstracts, 2003: 153-156.
[20]  Zhou H B, Zhang G Q, Bloor R. An anisotropic acoustic wave equation for modeling and migration in 2D TTI media: 76th Annual International Meeting, SEG, Expanded Abstracts, 2006: 194-198.
[21]  Hestholm S. Acoustic VTI modeling using high-order finite-differences: 77th Annual International Meeting, SEG, Expanded Abstracts, 2007, 26(1): 139-143.
[22]  Du X, Fletcher R, Fowler P J. A new pseudo-acoustic wave equation for TI media: Presented at the 70th Annual International Conference and Exhibition, EAGE, 2008.
[23]  Zhang Z H, Zhang Y. Reverse time migration in 3D heterogeneous TTI media: 78th Annual International Meeting, SEG, Expanded Abstracts, 2008: 2196-2200.
[24]  Fletcher R, Du X, Fowler P J. A new pseudo-acoustic wave equation for TI media: 78th Annual International Meeting, SEG, Expanded Abstracts, 2008: 2082-2086.
[25]  Fletcher R P, Du X, Fowler P J. Reverse time migration in tilted transversely isotropic (TTI) media. Geophysics, 2009, 74(6): WCA179-WCA187.
[26]  Duveneck E, Bakker P M. Stable P-wave modeling for reverse-time migration in tilted TI media. Geophysics, 2011, 76(2): S65-S75.
[27]  Fowler P J, Du X, Fletcher R P. Coupled equations for reverse time migration in transversely isotropic media. Geophysics, 2010, 75(1): S11-S22.
[28]  Kang W, Cheng J B. Prestack scalar reverse time migration of elastic seismic data in TI media: 81st Annual International Meeting, SEG, Expanded Abstracts, 2011: 3367-3371.
[29]  刘红伟, 李博, 刘洪等. 地震叠前逆时偏移高阶有限差分算法及GPU实现. 地球物理学报, 2010, 53(7): 1725-1733. Liu H W, Liu B, Liu H, et al. The algorithm of high order finite difference pre-stack reverse time migration and GPU implementation. Chinese J. Geophys. (in Chinese), 2010, 53(7): 1725-1733.
[30]  刘红伟, 刘洪, 邹振等. 地震叠前逆时偏移中的去噪与存储. 地球物理学报, 2010, 53(9): 2171-2180. Liu H W, Liu H, Zou Z, et al. The problems of denoise and storage in seismic reverse time migration. Chinese J. Geophys. (in Chinese), 2010, 53(9): 2171-2180.
[31]  Yoon K, Marfurt K J, Starr W. Challenges in reverse-time migration: 74th Annual International Meeting, SEG, Expanded Abstracts, MIG 4. 8, 2004.
[32]  杜启振, 秦童. 横向各向同性介质弹性波多分量叠前逆时偏移. 地球物理学报, 2009, 52(3): 801-807. Du Q Z, Qin T. Multicomponent prestack reverse-time migration of elastic waves in transverse isotropic medium. Chinese J. Geophys. (in Chinese), 2009, 52(3): 801-807.
[33]  张美根, 王妙月. 各向异性弹性波有限元叠前逆时偏移. 地球物理学报, 2001, 44(5): 711-719. Zhang M G, Wang M Y. Prestack finite element reverse-time migration for anisotropic elastic wave. Chinese J. Geophys. (in Chinese), 2001, 44(5): 711-719.
[34]  Dellinger J, Etgen J. Wave-field separation in two-dimensional anisotropic media. Geophysics, 1990, 55(7): 914-919.
[35]  Alkhalifah T. Acoustic approximations for processing in transversely isotropic media. Geophysics, 1998, 63(2): 623-631.
[36]  Alkhalifah T. An acoustic wave equation for anisotropic media. Geophysics, 2000, 65(4): 1239-1250.
[37]  吴国忱, 梁锴. VTI介质频率-空间域准P波正演模拟. 石油地球物理勘探, 2005, 40(5): 535-545. Wu G C, Liang K. Quasi P-wave forward modeling in frequency-space domain in VTI media. Oil Geophysical Prospecting (in Chinese), 2005, 40(5): 535-545.
[38]  吴国忱, 梁锴. VTI介质qP波方程高精度有限差分算子. 地球物理学进展, 2007, 22(3): 896-904. Wu G C, Liang K. High precision finite difference operators for qP wave equation in VTI media. Progress in Geophysics (in Chinese), 2007, 22(3): 896-904.
[39]  Duveneck E, Milik P, Bakker P M. Acoustic VTI wave equations and their application for anisotropic reverse-time migration: 78th Annual International Meeting, SEG, Expanded Abstracts, 2008: 2186-2190.
[40]  Ge Zhan, Pestana R C, Stoffa P L. An acoustic wave equation for pure P wave in 2D TTI media: 81st Annual International Meeting, SEG, Expanded Abstracts, 2011: S168-S173.
[41]  Reynolds A C. Boundary conditions for the numerical solution of wave propagation problems. Geophysics, 1978, 43(6): 1099-1110.
[42]  Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Transactions on Electromagnetic Compatibility, 1981, EMC-23(4): 377-382.
[43]  Keys R G. Absorbing boundary conditions for acoustic media. Geophysics, 1985, 50(6): 892-902.
[44]  Cerjan C, Kosloff D, Kosloff R, et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equation. Geophysics, 1985, 50(4): 705-708.
[45]  Sochacki J, Kubichek R, George J, et al. Absorbing boundary conditions and surface waves. Geophysics, 1987, 52(1): 60-71.
[46]  Cao S, Greenhalgh S. Attenuating boundary conditions for numerical modeling of acoustic wave propagation. Geophysics, 1998, 63(1): 231-243.
[47]  Sarma G S, Mallick K, Gadhinglajkar V R. Nonreflecting boundary condition in finite-element formulation for an elastic wave equation. Geophysics, 1998, 63(3): 1006-1016.
[48]  Tian X B, Kang I B, Kim G Y, et al. An improvement in the absorbing boundary technique for numerical simulation of elastic wave propagation. Journal of Geophysics and Engineering, 2008, 5(2): 203-209.
[49]  Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994, 114(2): 185-200.
[50]  Grechka V, Zhang L B, Rector J W. Shear waves in acoustic anisotropic media. Geophysics, 2004, 69(2): 576-582.
[51]  丁亮,刘洋. 逆时偏移成像技术研究进展. 地球物理学进展, 2011, 26(3): 1085-1100. Ding L, Liu Y. Progress in reverse time migration imaging. Progress in Geophys (in Chinese), 2011, 26(3): 1085-1100.
[52]  陈可洋. 地震波逆时偏移方法研究综述. 勘探地球物理进展, 2010, 33(3): 153-159. Chen K Y. Review of seismic reverse time migration methods. Progress in Exploration Geophysics (in Chinese), 2010, 33(3): 153-159.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133