全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

关于Coulomb应力变化/扰动作用下的Dieterich余震触发机制的广义解

DOI: 10.6038/cjg20130511, PP. 1526-1537

Keywords: 余震,地震触发,应力摩擦,Coulomb应力变化ΔCFF,唐山地震

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于单自由度弹簧-滑块模型,滑移速率和状态相依赖的摩擦关系可用于对断层内部地震成核和断层失稳过程的定量化描述.Dieterich(1994)余震触发理论模型首次给出中强震后区域应力场受到静态应力扰动后所导致的区域地震活动性的时空变化特征,近期研究也表明Dieterich理论模型可进一步推广至依赖时间的地震预测模型的建立.本文从简单直观的断层群体化概念模型出发,推导出了包括静态剪应力和正应力扰动作用下广义Dieterich解.同Dieterich经典解相比,广义Coulomb应力变化:ΔCFFG=Δτ-(μ0-α)Δσ取代了Dieterich方程中原有的剪切应力扰动Δτ.从而表明余震发生率R同作用于断层上的正应力的变化(扰动)有着密切的相关性.进一步,我们讨论了传统Coulomb应力变化(扰动)模型在地震预测过程中可能存在的局限性.以1976年MS7.8唐山大地震的主余震序列为例,采用本文中得到的结果,并结合视时窗分段方法,拟合了该地区地震活动性的时间演化过程.结果表明,除Coulomb应力变化(扰动)的影响外,主震前后加载于断层上的剪应力速率变化可对早期余震发生率产生很大影响.

References

[1]  Stein R S, Barka A A, Dieterich J H. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys. J. Int., 1997, 128(3): 594-604.
[2]  Parsons T, Toda S, Stein R S, et al. Heightened odds of large earthquakes near Istanbul: an interaction-based probability calculation. Science, 2000, 288(5466): 661-665.
[3]  Hardebeck J L. Stress triggering and earthquake probability estimates. J. Geophys. Res., 2004, 109(B4): B04310, doi:10.1029/2003JB002437.
[4]  Parsons T. Significance of stress transfer in time-dependent earthquake probability calculations. J. Geophys. Res., 2005, 110(B5): B05S02, doi:10.1029/2004JB003190.
[5]  Gomberg J, Belardinelli M, Cocco M, et al. Time-dependent earthquake probabilities. J. Geophys. Res., 2005, 110(B5): B05S04, doi: 10.1029/2004JB003405.
[6]  Working Group on California Earthquake Probabilities. Probabilities of large earthquakes in the San Francisco Bay region. Calitbmia, U. S. Geol. Surv. Circ. 1053, 1990.
[7]  Harris R A. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard. J. Geophys. Res., 1998, 103(B10): 24347-24358.
[8]  Toda S, Stein R S, Reasenberg P A, et al. Stress transferred by the 1995 Mw=6.9 Kobe, Japan, shock-Effect on aftershocks and future earthquake probabilities. J. Geophys. Res., 1998, 103(B10): 24543-24565.
[9]  Dieterich J H, Kilgore B. Implications of fault constitutive properties for earthquake prediction. Proceedings of the National Academy of Sciences, 1996, 93(9): 3787-3794.
[10]  尤惠川, 徐锡伟, 吴建平等. 唐山地震深浅构造关系研究. 地震地质, 2002, 24(4): 571-582. You H C, Xu X W, Wu J P, et al. Study on the relationship between shallow and deep structures in the 1976 Tangshan earthquake area. Seismology and Geology (in Chinese), 2002, 24(4): 571-582.
[11]  Huang B S, Yeh Y T. The fault ruptures of the 1976 Tangshan earthquake sequence inferred from coseismic crustal deformation. Bull. Seismol. Soc. Amer., 1997, 87(4): 1046-1057.
[12]  Butler R, Stewart G S, Kanamori H. The July 27, 1976 Tangshan, China earthquake-A complex sequence of intraplate events. Bull. Seismol. Soc. Amer., 1979, 69(1): 207-220.
[13]  邓起东, 徐锡伟, 于贵华. 中国大陆活动断裂的分区特征及其成因. // 中国活动断层研究. 北京: 地震出版社, 1994: 1-14. Deng Q D, Xu X W, Yu G H. Characteristics of regionalization of active faults in China and their genesis (in Chinese). // China Active Faults Reserch. Beijing: Seismological Press, 1994: 1-14.
[14]  Robinson R, Zhou S. Stress interactions within the Tangshan, China, earthquake sequence of 1976. Bull. Seismol. Soc. Amer., 2005, 95(6): 2501-2505.
[15]  万永革, 沈正康, 曾跃华等. 唐山地震序列应力触发的粘弹性力学模型研究. 地震学报, 2008, 30(6): 581-593. Wan Y G, Shen Z K, Zeng Y H, et al. Study on visco-elastic stress triggering model of the 1976 Tangshan earthquake sequence. Acta Seismologica Sinica (in Chinese), 2008, 30(6): 581-593.
[16]  Cui X F, Xie F R, Zhang H Y. Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamic interest. Acta Seismologica Sinica, 2006, 19(5): 485-496.
[17]  Segall P, Desmarais E K, Shelly D, et al. Earthquakes triggered by silent slip events on Kilauea volcano, Hawaii. Nature, 2006, 442(7098): 71-74.
[18]  仲秋, 史保平. 1976年Ms7.8唐山地震余震序列持续时间及对地震危险性分析的意义. 地震学报, 2012, 34(4): 494-508. Zhong Q, Shi B P. Aftershock time duration of the 1976 Ms7.8 Tangshan earthquake and implication for seismic hazard. Acta Seismologica Sinica (in Chinese), 2012, 34(4): 494-508.
[19]  Steven C J, Lynn R S. Evolving towards a critical point: a review of accelerating seismic moment/energy release prior to large and great Earthquakes. Pure Appl. Geophys., 1999, 155(4): 279-306.
[20]  蒋长胜, 赵祎喆, 王行舟. 亚洲地区Benioff应变释放和强震活动的周期性特征研究. 地震, 2010, 30(3): 72-80. Jiang C S, Zhao Y Z, Wang X Z. Benioff strain release and periodic characteristics of strong earthquake activities in Asia. Earthquake (in Chinese), 2010, 30(3): 72-80.
[21]  Freed A M. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci., 2005, 33(1): 335-367.
[22]  Dieterich J. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res., 1994, 99(B2): 2601-2601.
[23]  King G C P, Stein R S, Lin J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Amer., 1994, 84(3): 935-953.
[24]  Harris R A, Simpson R W. Changes in static stress on southern California faults after the 1992 Landers earthquake. J. Geophys. Res., 1992, 103(B10): 24439-24451.
[25]  Ruina A. Slip instability and state variable friction laws. J. Geophys. Res., 1983, 88(B12): 359-310.
[26]  Dieterich J H. Modeling of rock friction 1. Experimental results and constitutive equations. J. Geophys. Res., 1979, 84(B5): 2161-2168.
[27]  Dieterich J H. Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics, 1992, 211(1-4): 115-134.
[28]  Dieterich J H. A model for the nucleation of earthquake slip. Earthquake Source Mechanics, 1986, 37: 37-47.
[29]  Scholz C H. Earthquakes and friction laws. Nature, 1998, 391(6662): 37-42.
[30]  Ziv A, Rubin A. Implications of rate-and-state friction for properties of aftershock sequence: Quasi-static inherently discrete simulations. J. Geophys. Res., 2003, 108(B1), doi: 10.1029/2001JB001219.
[31]  Byerlee J. Friction of rocks. Pure Appl. Geophys., 1978, 116(4-5): 615-626.
[32]  Perfettini H, Avouac J. Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan. J. Geophys. Res., 2004, 109(B2), doi:10.1029/2003JB002488.
[33]  Kaneko Y. Investigations of earthquake source processes based on fault models with variable friction rheology . California: California Institute of Technology, 2009.
[34]  秦四清, 徐锡伟, 胡平等. 孕震断层的多锁固段脆性破裂机制与地震预测新方法的探索. 地球物理学报, 2010, 53(4): 1001-1014, doi:10.3969/j.issn.0001-5733.2010.04.025. Qin S Q, Xu X W, Hu P, et al. Brittle failure mechanism of multiple locked patches in a seismogenic fault system and exploration on a new way for earthquake prediction. Chinese J. Geophys. (in Chinese), 2010, 53(4): 1001-1014, doi:10.3969/j.issn.0001-5733.2010.04.025.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133