全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

超声激励低渗煤层甲烷增透机理

DOI: 10.6038/cjg20130530, PP. 1726-1733

Keywords: 超声激励,裂缝,尺度效应,CT,渗透率

Full-Text   Cite this paper   Add to My Lib

Abstract:

超声激励增透煤层是一种不受甲烷储层地质条件和气源特性限制,具有普遍应用价值的增采技术.但由于煤岩致密、裂隙发育,煤岩孔隙度存在多尺度效应,受储层介质尺度效应影响的增透促吸机理尚不明确.本文通过CT观测实验和渗透率测定实验,对超声波作用下煤样不同尺度裂隙发展规律进行了分析,对比测定超声作用煤样渗透率变化规律,建立了超声增透煤层甲烷渗透率的修正公式.研究结果表明:CT观测实验很好地证明了超声的机械震碎作用;在声场衰减范围内,煤体损伤和机械震碎作用明显;超声波作用后的煤层渗透率有平均135%~169%的提高.研究工作为超声激励增加煤层的渗透率提供了实验基础.

References

[1]  刘保县, 鲜学福, 姜德义. 煤与瓦斯延期突出机理及其预测预报的研究. 岩石力学与工程学报, 2002, 21(5): 647-650. Liu B X, Xian X F, Jiang D Y. Research on the mechanism and prediction of delay outburst of coal and gas. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 2002, 21(5): 647-650.
[2]  刘保县, 鲜学福, 徐龙君等. 地球物理场对煤吸附瓦斯特性的影响. 重庆大学学报, 2000, 23(5): 78-81. Liu B X, Xian X F, Xu L J, et al. Study on adsorption characteristics of coal to gas in geophysical field. Journal of Chongqing University (Natural Science Edition) (in Chinese), 2000, 23(5): 78-81.
[3]  易俊. 声震法提高煤层气抽采率的机理及技术原理研究. 重庆: 重庆大学, 2007. Yi J. A research on mechanism and technological principle of enhancing coal bed gas extraction rate by ultrasonic vibrating (in Chinese). Chongqing: Chongqing University, 2007.
[4]  何学秋. 交变电磁场对煤吸附瓦斯特性的影响. 煤炭学报, 1996, 21(1): 123-124. He X Q. The effect of alternative electromagnetic field on adsorption of gas by coal. Journal of China Coal Society (in Chinese), 1996, 21(1): 123-124.
[5]  任伟杰, 袁旭东, 潘一山. 功率超声对煤岩力学性质影响的实验研究. 辽宁工程技术大学学报, 2001, 20(6): 743-746. Ren W J, Yuan X D, Pan Y S. The experimental study of the action power ultrasound to the coal-mass. Journal of Liaoning Technical University (Natural Science) (in Chinese), 2001, 20(6): 743-746.
[6]  于永江, 张春会, 王来贵. 超声波干扰提高煤层气抽放率的机理. 辽宁工程技术大学学报(自然科学版), 2008, 27(6): 805-808. Yu Y J, Zhang C H, Wang L G. Mechanism of ultrasonic interference to increase the rate of CBM. Journal of Liaoning Technical University (Natural Science) (in Chinese), 2008, 27(6): 805-808.
[7]  张春会, 李其廉, 于永江等. 功率超声致煤层瓦斯升温机理. 辽宁工程技术大学学报(自然科学版), 2009, 28(4): 525-528. Zhang C H, Li Q L, Yu Y J, et al. Power ultrasound-induced heating mechanism of gas in coal seam. Journal of Liaoning Technical University (Natural Science) (in Chinese), 2009, 28(4): 525-528.
[8]  Ikeda T, Kotani K, Maeda Y, et al. Preliminary study on application of X-ray CT scanner to measurement of void fractions in steady state two-phase flows. Journal of Nuclear Science and Technology, 1983, 20(1): 1-12.
[9]  Kawamura T. Nondestructive three-dimensional density measurements of ice core samples by X ray computed tomography. Journal of Geophysical Research, 1990, 95(B8): 12407-12412.
[10]  Kawakata H, Cho A, Kiyama T, et al. Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan. Tectonophysics, 1999, 313(3): 293-305.
[11]  潘一山, 唐巨鹏, 李成全. 煤层中气水两相运移的NMRI试验研究. 地球物理学报, 2008, 51(5): 1620-1626. Pan Y S, Tang J P, Li C Q. NMRI test on two phase transport of gas water in coal seam. Chinese J. Geophys. (in Chinese), 2008, 51(5): 1620-1626.
[12]  于艳梅, 胡耀青, 梁卫国等. 应用CT技术研究瘦煤在不同温度下孔隙变化特征. 地球物理学报, 2012, 55(2): 637-644. Yu Y M, Hu Y Q, Liang W G, et al. Study on pore characteristics of lean coal at different temperature by CT technology. Chinese J. Geophys. (in Chinese), 2012, 55(2): 637-644.
[13]  Withjack E M. Computed tomography for rock property determination and fluid flow visualization. Society of Petroleum Engineers Formation Evaluation, 1988: 696-704.
[14]  Klobes P, Riesemier H, Meyer K, et al. Rock porosity determination by combination of X-ray computerized tomography with mercury porosimetry Fresenius. Journal of Analytical Chemistry, 1997, 357(5): 543-547.
[15]  Doi N, Kato O, Sakagawa Y, et al. Characterization of fracture and rock property of the Kakkonda granite by FMI and other loggings. Journal of the Geothermal Research Society Japan, 1998, 20: 34-37.
[16]  Ohtani T, Nakashima Y, Muraoka H. Three dimensional miarolitic cavity distribution in the Kakkonda granite from borehole WD-1a using X-ray computerized tomography. Engineering Geology, 2000, 56(1-2): 1-9.
[17]  Wildenschild D, Vaz C M P, Rivers M L, et al. Using X-ray computed tomography in hydrology: systems, resolutions and limitations. Journal of Hydrology, 2002, 267(3-4): 285-297.
[18]  Goodwin A K, O''Nell M A, Anderson W F. The use of X-ray computer tomography to investigate particulate interactions within opencast coal mine backfills. Engineering Geology, 2003, 70(3-4): 331-341.
[19]  杨更社. 岩石细观损伤力学特性及本构关系的CT识别. 煤炭学报, 2000, 25(12): 102-106. Yang G S. CT identification on the meso-damage mechanic characteristics and constitutive relation of rock. Journal of China Coal Society (in Chinese), 2000, 25(12): 102-106.
[20]  任建喜, 葛修润, 蒲毅彬. 岩石破坏全过程的CT细观损伤演化机理动态分析. 西安公路交通大学学报, 2000, 20(4): 12-15. Ren J X, Ge X R, Pu Y B. CT Real-time analysis of meso-damage propagation law of the whole process of rock failure. Journal of Xi''an Highway University (in Chinese), 2000, 20(4): 12-15.
[21]  Harpalani S. Gas flow through stressed coal [Ph. D. thesis]. Califomia Berkeley: University of Califomia Berkeley, 1985.
[22]  周世宁, 林柏泉. 煤层瓦斯赋存与流动理论. 北京: 煤炭工业出版社, 1999. Zhou S N, Lin B Q. The Theory of Gas Flow and Storage in Coal Seam (in Chinese). Beijing: China Coal Industry Publishing House, 1999.
[23]  彭守建, 许江, 陶云奇等. 地球物理场中煤岩瓦斯渗流研究现状及展望. 地球物理学进展, 2009, 24(2): 558-564. Peng S J, Xu J, Tao Y Q, et al. Development and prospect of research on coal-seam gas seepage in the geophysical field. Progress in Geophysics (in Chinese), 2009, 24(2): 558-564.
[24]  芦俊, 王赟, 赵伟. 应用三分量地震数据反演煤系地层孔隙含水量. 地球物理学报, 2010, 53(7): 1734-1740. Lu J, Wang Y, Zhao W. Quantitative prediction of water content in porosity in coal measure strata using three-component seismic data. Chinese J. Geophys. (in Chinese), 2010, 53(7): 1734-1740.
[25]  汪志军, 刘盛东, 张兴元. 巷道前方煤体波速与瓦斯参数相关分析研究. 地球物理学进展, 2012, 27(1): 349-354. Wang Z J, Liu S D, Zhang X Y. Correlation analysis of apparent seismic wave speeds and gas parameters in front of the coal roadway. Progress in Geophysics (in Chinese), 2012, 27(1): 349-354.
[26]  王伟, 高星, 李松营等. 槽波层析成像方法在煤田勘探中的应用——以河南义马矿区为例. 地球物理学报, 2012, 55(3): 1054-1062. Wang W, Gao X, Li S Y, et al. Channel wave tomography method and its application in coal mine exploration: An example from Henan Yima Mining Area. Chinese J. Geophys. (in Chinese), 2012, 55(3): 1054-1062.
[27]  冯锐, 林宣明, 陶裕录等. 煤层开采覆岩破坏的层析成像研究. 地球物理学报, 1996, 39(1): 114-124. Feng R, Lin X M, Tao Y L, et al. Geotomographic research on cap rock destruction caused by mining coal seam. Chinese J. Geophys. (in Chinese), 1996, 39(1): 114-124.
[28]  王宏图, 李晓红, 鲜学福等. 地电场作用下煤中甲烷气体渗流性质的实验研究. 岩石力学与工程学报, 2004, 22(2): 303-306. Wang H T, Li X H, Xian X F, et al. Testing study on seepage properties of methane gas in coal under the action of geo-electric field. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 2004, 22(2): 303-306.
[29]  Harpalani S. The effect of gas evacuation on coal permeability test specimens. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1984, 21(3): 361-364.
[30]  徐龙君, 鲜学福, 李晓红等. 交变电场下白皎煤介电常数的实验研究. 重庆大学学报, 1998, 21(3): 6-10. Xu L J, Xian X F, Li X H, et al. An experimental study on the permittivity of Baijiao coal in alternating electric field. Journal of Chongqing University (Natural Science Edition) (in Chinese), 1998, 21(3): 6-10.
[31]  Somerton W H. Effect of stress on permeability of coal. Int. J. Rock Mech. Min. Sci., 1974, 12(2): 129-145.
[32]  王宏图, 杜云贵, 鲜学福等. 地电场对煤中瓦斯渗流特性的影响. 重庆大学学报 (自然科学版), 2000, 23(增): 22-24. Wang H T, Du Y G, Xian X F, et al. The influence of geo-electric field on gas seepage properties in coal. Journal of Chongqing University (Natural Science Edition) (in Chinese), 2000, 23(Suppl.): 22-24.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133