全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非均质天然气藏的岩石物理模型及含气饱和度反演

DOI: 10.6038/cjg20130527, PP. 1696-1706

Keywords: 岩石物理模型,Biot-Rayleigh理论,非均质,孔隙度,饱和度,气藏检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

非均质气藏中,天然气一般呈"斑块状"分布于含水岩石内部,这种非均匀分布特征会导致地震波显著的频散与衰减现象.为发展适用于碳酸盐岩储层中流体检测的岩石物理模型,本文基于Biot-Rayleigh波动方程,实现了对非饱和岩石的多尺度理论建模,预测了不同尺度下波响应与岩性、流体间的定量联系.将此项建模技术应用于阿姆河右岸的灰岩气藏,给出了多尺度的岩石物理学图板.通过与实验数据、测井精细解释结果及地震数据的对比分析,本文论证了图板的正确性与可适用性.结合叠后波阻抗反演与叠前弹性参数反演,基于地震资料进行了储层含气饱和度与孔隙度的反演,反演结果与各井实际的产气情况吻合.

References

[1]  White J E. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 1975, 40(2): 224-232.
[2]  Dutta N C, Seriff A J. On White’s model of attenuation in rocks with partial gas saturation. Geophysics, 1979, 44(11): 1806-1812.
[3]  Dutta N C, Odé H. Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model), Part I: Biot theory. Geophysics, 1979, 44(11): 1777-1788.
[4]  刘炯, 马坚伟, 杨慧珠. White球状Patchy模型中纵波传播研究. 地球物理学报, 2010, 53(4): 954-962. Liu J, Ma J W, Yang H Z. Research on P-wave''s propagation in White''s sphere model with patchy saturation. Chinese J. Geophys. (in Chinese), 2010, 53(4): 954-962.
[5]  刘炯, 马坚伟, 杨慧珠. 周期成层Patchy模型中纵波的频散和衰减研究. 地球物理学报, 2009, 52(11): 2879-2885. Liu J, Ma J W, Yang H Z. Research on dispersion and attenuation of P wave in periodic layered-model with patchy saturation. Chinese J. Geophys. (in Chinese), 2009, 52(11): 2879-2885.
[6]  Pride S R, Berryman J G, Harris J M. Seismic attenuation due to wave-induced flow. J. Geophys. Res., 2004, 109: B01201, doi: 10.1029/2003JB002639.
[7]  Ba J, Nie J X, Cao H, et al. Mesoscopic fluid flow simulation in double-porosity rocks. Geophys. Res. Lett., 2008, 35: L04303, doi: 10.1029/2007GL032429.
[8]  Ba J, Cao H, Yao F C, et al. Double-porosity rock model and squirt flow in the laboratory frequency band. Appl. Geophys., 2008, 5(4): 261-276.
[9]  巴晶. 双重孔隙介质波传播理论与地震响应实验分析. 中国科学G辑, 2010, 40(11): 1398-1409. Ba J. Wave propagation theory in double-porosity medium and experimental analysis on seismic responses. Scientia Sinica Physica, Mechanica & Astronomica (in Chinese), 2010, 40(11): 1398-1409.
[10]  Ba J, Yang H Z, Xie G Q. AGILD seismic modeling for double-porosity media. Piers Online, 2008, 4(3): doi: 10.2529/PIERS071107235651.
[11]  Ba J, Carcione J M, Nie J X. Biot-Rayleigh theory of wave propagation in double-porosity media. J. Geohpys. Res., 2011, 116: B06202, doi: 10.1029/2010JB008185.
[12]  Ba J, Cao H, Yao F C. Velocity dispersion of P-waves in sandstone and carbonate: Double-porosity and local fluid flow theory. SEG Annual Meeting 2010, Denver, US, 2010: 2557-2563.
[13]  巴晶, Carcione J M, 曹宏等. 非饱和岩石中的纵波频散与衰减: 双重孔隙介质波传播方程. 地球物理学报, 2012, 55(1): 219-231. Ba J, Carcione J M, Cao H, et al. Velocity dispersion and attenuation of P waves in partially-saturated rocks: Wave propagation equations in double-porosity medium. Chinese J. Geophys. (in Chinese), 2012, 55(1): 219-231.
[14]  Sun W T, Ba J, Müller T M, et al. P-wave dispersion and attenuation in patchy-saturated Rocks. White, Dutta, Johnson and Biot-Rayleigh theories, The 74th EAGE2012 in Copenhagen, 2012, Copenhagen, Denmark.
[15]  Xu S Y, White R E. A physical model for shear-wave velocity prediction. Geophysical Prospecting, 1995, 44(4): 687-717.
[16]  Xu S Y, Payne M A. Modeling elastic properties in carbonate rocks. The Leading Edge, 2009, 28(1): 66-74.
[17]  Mavko G, Mukerji T, Dvorkin J. The Rock Physics Handbook-Tools for Seismic Analysis of Porous Media (2nd ed). New York: Cambridge University Press, 2009.
[18]  Norris A N. A differential scheme for the effective moduli of composites. Mechanics of Materials, 1985, 4(1): 1-16.
[19]  Kuster G T, Toksz M N. Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations. Geophysics, 1974, 39(5): 587-606.
[20]  Sams M S, Neep J P, Worthington M H, et al. The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks. Geophysics, 1997, 62(5): 1456-1464.
[21]  徐光成, 巴晶, 李劲松等. 阿姆河右岸麦捷让地区碳酸盐岩储层流体检测研究. 地球物理学进展, 2013, 28(3),待刊. Xu G C, Ba J, Li J S, et al. A study on fluid detection in Metajan carbonate reservoirs in the right bank block of Amu Darya river. Progress in Geophys. (in Chinese),2013,28(3),in press.
[22]  Cadoret T, Marion D, Zinszner B. Influence of frequency and fluid distribution on elastic wave velocities in partially saturated limestones. J. Geophys. Res., 1995, 100(B6): 9789-9803.
[23]  Gassmann F. Vber die Elastizitt porser Medien. Vier. der Natur. Gesellschaft in Zürich, 1951, 96: 1-23.
[24]  Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: I. Low-frequency range. J. Acoust. Soc. Am., 1956, 28(2): 168-178.
[25]  Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: II. Higher frequency range. J. Acoust. Soc. Am., 1956, 28(2): 179-191.
[26]  Johnson D L. Theory of frequency dependent acoustics in patchy-saturated porous media. J. Acoust. Soc. Am., 2001, 110(2): 682-694.
[27]  Müller T M, Gurevich B, Lebedev M. Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-A review. Geophysics, 2010, 75(5): 75A147-75A164.
[28]  Gurevich B, Zyrianov V B, Lopatnikov S L. Seismic attenuation in finely layered porous rocks: Effects of fluid flow and scattering. Geophysics, 1997, 62(1): 319-324.
[29]  Toms J, Müller T M, Ciz R, et al. Comparative review of theoretical models for elastic wave attenuation and dispersion in partially saturated rocks. Soil Dynamics and Earthquake Engineering, 2006, 26(6-7): 548-565.
[30]  Dvorkin J, Nur A. Dynamic poroelasticity: A unified model with the Squirt and the Biot mechanisms. Geophysics, 1993, 58(4): 524-533.
[31]  聂建新, 杨顶辉, 杨慧珠. 基于非饱和多孔隙介质BISQ模型的储层参数反演. 地球物理学报, 2004, 47(6): 1101-1105. Nie J X, Yang D H, Yang H Z. Inversion of reservoir parameters based on the BISQ model in partially saturated porous media. Chinese J. Geophys. (in Chinese), 2004, 47(6): 1101-1105.
[32]  Nie J X, Ba J, Yang D H, et al. BISQ model based on a Kelvin-Voigt viscoelastic frame in a partially saturated porous medium. Applied Geophysics, 2012, 9(2): 213-222.
[33]  Berryman J G, Wang H F. The elastic coefficients of double-porosity models for fluid transport in jointed rock. J. Geophys. Res., 1995, 100(B12): 24611-24627.
[34]  Berryman J G, Wang H F. Elastic wave propagation and attenuation in a double-porosity dual-permeability medium. Int. J. Rock Mech. Min. Sci., 2000, 37(1-2): 63-78.
[35]  Santos J E, Corberó J M, Douglas J. Static and dynamic behavior of a porous solid saturated by a two-phase fluid. J. Acoust. Soc. Am., 1990, 87(4): 1428-1438.
[36]  Santos J E, Douglas J, Corberó J M, et al. A model for wave propagation in a porous medium saturated by a two-phase fluid. J. Acoust. Soc. Am., 1990, 87(4): 1439-1448.
[37]  赵海波. 不相混气液饱和孔隙介质声场数值模拟与应用研究. 北京: 中国科学院声学研究所, 2007. Zhao H B. Numerical study of acoustic wavefield in porous media saturated with two immiscible fluids and its application (in Chinese). Beijing: Institute of Acoustics, Chinese Academy of Sciences, 2007.
[38]  Johnson D L, Koplik J, Dashen R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech., 1987, 176: 379-402.
[39]  唐晓明. 含孔隙、裂隙介质弹性波动的统一理论——Biot理论的推广. 中国科学 (地球科学), 2011, 41(6): 784-785. Tang X M. A unified theory for elastic wave propagation through porous media containing cracks: An extension of Biot''s poroelastic wave theory. Science China Earth Sciences, 2011, 54(9): 1441-1452.
[40]  陈雪莲, 唐晓明. 孔、裂隙并存地层中的声波测井理论及多极子声场特征. 地球物理学报, 2012, 55(6): 2129-2140. Chen X L, Tang X M. Numerical study on the characteristics of acoustic logging response in the fluid-filled borehole embedded in crack-porous medium. Chinese J. Geophys. (in Chinese), 2012, 55(6): 2129-2140.
[41]  Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag., 1917, 34(200): 94-98.
[42]  Adam L, Batzle M, Brevik I. Gassmann''s fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies. Geophysics, 2006, 71(6): F13-F183.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133