White J E. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 1975, 40(2): 224-232.
[2]
Dutta N C, Seriff A J. On White’s model of attenuation in rocks with partial gas saturation. Geophysics, 1979, 44(11): 1806-1812.
[3]
Dutta N C, Odé H. Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model), Part I: Biot theory. Geophysics, 1979, 44(11): 1777-1788.
[4]
刘炯, 马坚伟, 杨慧珠. White球状Patchy模型中纵波传播研究. 地球物理学报, 2010, 53(4): 954-962. Liu J, Ma J W, Yang H Z. Research on P-wave''s propagation in White''s sphere model with patchy saturation. Chinese J. Geophys. (in Chinese), 2010, 53(4): 954-962.
[5]
刘炯, 马坚伟, 杨慧珠. 周期成层Patchy模型中纵波的频散和衰减研究. 地球物理学报, 2009, 52(11): 2879-2885. Liu J, Ma J W, Yang H Z. Research on dispersion and attenuation of P wave in periodic layered-model with patchy saturation. Chinese J. Geophys. (in Chinese), 2009, 52(11): 2879-2885.
[6]
Pride S R, Berryman J G, Harris J M. Seismic attenuation due to wave-induced flow. J. Geophys. Res., 2004, 109: B01201, doi: 10.1029/2003JB002639.
[7]
Ba J, Nie J X, Cao H, et al. Mesoscopic fluid flow simulation in double-porosity rocks. Geophys. Res. Lett., 2008, 35: L04303, doi: 10.1029/2007GL032429.
[8]
Ba J, Cao H, Yao F C, et al. Double-porosity rock model and squirt flow in the laboratory frequency band. Appl. Geophys., 2008, 5(4): 261-276.
[9]
巴晶. 双重孔隙介质波传播理论与地震响应实验分析. 中国科学G辑, 2010, 40(11): 1398-1409. Ba J. Wave propagation theory in double-porosity medium and experimental analysis on seismic responses. Scientia Sinica Physica, Mechanica & Astronomica (in Chinese), 2010, 40(11): 1398-1409.
[10]
Ba J, Yang H Z, Xie G Q. AGILD seismic modeling for double-porosity media. Piers Online, 2008, 4(3): doi: 10.2529/PIERS071107235651.
[11]
Ba J, Carcione J M, Nie J X. Biot-Rayleigh theory of wave propagation in double-porosity media. J. Geohpys. Res., 2011, 116: B06202, doi: 10.1029/2010JB008185.
[12]
Ba J, Cao H, Yao F C. Velocity dispersion of P-waves in sandstone and carbonate: Double-porosity and local fluid flow theory. SEG Annual Meeting 2010, Denver, US, 2010: 2557-2563.
[13]
巴晶, Carcione J M, 曹宏等. 非饱和岩石中的纵波频散与衰减: 双重孔隙介质波传播方程. 地球物理学报, 2012, 55(1): 219-231. Ba J, Carcione J M, Cao H, et al. Velocity dispersion and attenuation of P waves in partially-saturated rocks: Wave propagation equations in double-porosity medium. Chinese J. Geophys. (in Chinese), 2012, 55(1): 219-231.
[14]
Sun W T, Ba J, Müller T M, et al. P-wave dispersion and attenuation in patchy-saturated Rocks. White, Dutta, Johnson and Biot-Rayleigh theories, The 74th EAGE2012 in Copenhagen, 2012, Copenhagen, Denmark.
[15]
Xu S Y, White R E. A physical model for shear-wave velocity prediction. Geophysical Prospecting, 1995, 44(4): 687-717.
[16]
Xu S Y, Payne M A. Modeling elastic properties in carbonate rocks. The Leading Edge, 2009, 28(1): 66-74.
[17]
Mavko G, Mukerji T, Dvorkin J. The Rock Physics Handbook-Tools for Seismic Analysis of Porous Media (2nd ed). New York: Cambridge University Press, 2009.
[18]
Norris A N. A differential scheme for the effective moduli of composites. Mechanics of Materials, 1985, 4(1): 1-16.
[19]
Kuster G T, Toksz M N. Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations. Geophysics, 1974, 39(5): 587-606.
[20]
Sams M S, Neep J P, Worthington M H, et al. The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks. Geophysics, 1997, 62(5): 1456-1464.
[21]
徐光成, 巴晶, 李劲松等. 阿姆河右岸麦捷让地区碳酸盐岩储层流体检测研究. 地球物理学进展, 2013, 28(3),待刊. Xu G C, Ba J, Li J S, et al. A study on fluid detection in Metajan carbonate reservoirs in the right bank block of Amu Darya river. Progress in Geophys. (in Chinese),2013,28(3),in press.
[22]
Cadoret T, Marion D, Zinszner B. Influence of frequency and fluid distribution on elastic wave velocities in partially saturated limestones. J. Geophys. Res., 1995, 100(B6): 9789-9803.
[23]
Gassmann F. Vber die Elastizitt porser Medien. Vier. der Natur. Gesellschaft in Zürich, 1951, 96: 1-23.
[24]
Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: I. Low-frequency range. J. Acoust. Soc. Am., 1956, 28(2): 168-178.
[25]
Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: II. Higher frequency range. J. Acoust. Soc. Am., 1956, 28(2): 179-191.
[26]
Johnson D L. Theory of frequency dependent acoustics in patchy-saturated porous media. J. Acoust. Soc. Am., 2001, 110(2): 682-694.
[27]
Müller T M, Gurevich B, Lebedev M. Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-A review. Geophysics, 2010, 75(5): 75A147-75A164.
[28]
Gurevich B, Zyrianov V B, Lopatnikov S L. Seismic attenuation in finely layered porous rocks: Effects of fluid flow and scattering. Geophysics, 1997, 62(1): 319-324.
[29]
Toms J, Müller T M, Ciz R, et al. Comparative review of theoretical models for elastic wave attenuation and dispersion in partially saturated rocks. Soil Dynamics and Earthquake Engineering, 2006, 26(6-7): 548-565.
[30]
Dvorkin J, Nur A. Dynamic poroelasticity: A unified model with the Squirt and the Biot mechanisms. Geophysics, 1993, 58(4): 524-533.
[31]
聂建新, 杨顶辉, 杨慧珠. 基于非饱和多孔隙介质BISQ模型的储层参数反演. 地球物理学报, 2004, 47(6): 1101-1105. Nie J X, Yang D H, Yang H Z. Inversion of reservoir parameters based on the BISQ model in partially saturated porous media. Chinese J. Geophys. (in Chinese), 2004, 47(6): 1101-1105.
[32]
Nie J X, Ba J, Yang D H, et al. BISQ model based on a Kelvin-Voigt viscoelastic frame in a partially saturated porous medium. Applied Geophysics, 2012, 9(2): 213-222.
[33]
Berryman J G, Wang H F. The elastic coefficients of double-porosity models for fluid transport in jointed rock. J. Geophys. Res., 1995, 100(B12): 24611-24627.
[34]
Berryman J G, Wang H F. Elastic wave propagation and attenuation in a double-porosity dual-permeability medium. Int. J. Rock Mech. Min. Sci., 2000, 37(1-2): 63-78.
[35]
Santos J E, Corberó J M, Douglas J. Static and dynamic behavior of a porous solid saturated by a two-phase fluid. J. Acoust. Soc. Am., 1990, 87(4): 1428-1438.
[36]
Santos J E, Douglas J, Corberó J M, et al. A model for wave propagation in a porous medium saturated by a two-phase fluid. J. Acoust. Soc. Am., 1990, 87(4): 1439-1448.
[37]
赵海波. 不相混气液饱和孔隙介质声场数值模拟与应用研究. 北京: 中国科学院声学研究所, 2007. Zhao H B. Numerical study of acoustic wavefield in porous media saturated with two immiscible fluids and its application (in Chinese). Beijing: Institute of Acoustics, Chinese Academy of Sciences, 2007.
[38]
Johnson D L, Koplik J, Dashen R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech., 1987, 176: 379-402.
[39]
唐晓明. 含孔隙、裂隙介质弹性波动的统一理论——Biot理论的推广. 中国科学 (地球科学), 2011, 41(6): 784-785. Tang X M. A unified theory for elastic wave propagation through porous media containing cracks: An extension of Biot''s poroelastic wave theory. Science China Earth Sciences, 2011, 54(9): 1441-1452.
[40]
陈雪莲, 唐晓明. 孔、裂隙并存地层中的声波测井理论及多极子声场特征. 地球物理学报, 2012, 55(6): 2129-2140. Chen X L, Tang X M. Numerical study on the characteristics of acoustic logging response in the fluid-filled borehole embedded in crack-porous medium. Chinese J. Geophys. (in Chinese), 2012, 55(6): 2129-2140.
[41]
Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag., 1917, 34(200): 94-98.
[42]
Adam L, Batzle M, Brevik I. Gassmann''s fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies. Geophysics, 2006, 71(6): F13-F183.