孟小红, 郭良辉, 张致付等. 基于非均匀快速傅里叶变换的最小二乘反演地震数据重建. 地球物理学报, 2008, 51(1): 235-241. Meng X H, Guo L H, Zhang Z F, et al. Reconstruction of seismic data with least squares inversion based on nonuniform fast Fourier transform. Chinese J. Geophys. (in Chinese), 2008, 51(1): 235-241.
[2]
Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[3]
Herrmann F J, Hennenfent G. Non-parametric seismic data recovery with curvelet frames. Geophysical Journal International, 2008, 173(1): 233-248.
[4]
Herrmann F J, Wang D, Hennenfent G, et al. Curvelet-based seismic data processing: A multiscale and nonlinear approach. Geophysics, 2008, 73(1): A1-A5.
[5]
Neelamani R, Baumstein A, Gillard D, et al. Coherent and random noise attenuation using the curvelet transform. The Leading Edge, 2008, 27(2): 240-248.
[6]
Wason H, Herrmann F J, Tim T Y. Sparsity-promoting recovery from simultaneous data: a compressive sensing approach. 81thAnnual International Meeting of Society of Exploration Geophysicists, 2011: 6-10.
[7]
唐刚, 杨慧珠. 基于泊松碟采样的地震数据压缩重建. 地球物理学报, 2010, 53(9): 2181-2188. Tang G, Yang H Z. Seismic data compression and reconstruction based on Poisson disk sampling. Chinese J. Geophys. (in Chinese), 2010, 53(9): 2181-2188.
[8]
Leneman O. Random sampling of random processes: Impulse response. Information and Control, 1966, 9(2): 347-363.
[9]
Hennenfent G, Herrmann F J. Simply denoise: wavefield reconstruction via jittered undersampling. Geophysics, 2008, 73(3): V19-V28.
[10]
唐刚. 基于压缩感知和稀疏表示的地震数据重建与去噪. 北京: 清华大学, 2010. Tang G. Seismic data reconstruction and denoising based on compressive sensing and sparse representation (in Chinese). Beijing: Tsinghua University, 2010.
[11]
Trad D, Ulryeh T, Sacchi M. Latest views of the sparse Radon transform. Geophysics, 2003, 68(1): 386-399.
[12]
Berg E D, Friedlander M P. Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput., 2008, 31(2): 890-912.
[13]
Bregman L. The method of successive projection for finding a common point of convex sets. Soviet Math, 1965, 6(3): 688-692.
[14]
Herrmann F J. Randomized sampling and sparsity: Getting more information from fewer samples. Geophysics, 2010, 75(6): WB173-WB187.
[15]
Trad D O. Five-dimensional interpolation: Recovering from acquisition constraints. Geophysics, 2009, 74(6): V123-V132.
[16]
马坚伟, 唐刚, 汤文. 基本曲波变换和压缩感知的不完备地震数据恢复. 长沙: 中国地球物理年会, 2010. Ma J W, Tang G, Tang W. Recovery of incomplete seismic data based on curvelet transform and compressed sensing (in Chinese). Changsha: Chinese Geophysical Year Meeting, 2010.
[17]
Wang J F, Ng M, Perz M. Seismic data interpolation by greedy local Radon transform. Geophysics, 2010, 75(6): 225-234.
[18]
Jin S. 5D seismic data regularization by a damped least-norm Fourier inversion. Geophysics, 2010, 75(6): 103-111.
[19]
刘国昌, 陈小宏, 郭志峰等. 基于curvelet变换的缺失地震数据插值方法. 石油地球物理勘探, 2011, 46(2): 237-245. Liu G C, Chen X H, Guo Z F, et al. Missing seismic data rebuilding by interpolation based on curvelet transform. Oil Geophysical Prospecting (in Chinese), 2011, 46(2): 237-245.
[20]
Xu S, Zhang Y, Pham D, et al. Antileakage Fourier transform for seismic data regularization. Geophysics, 2005, 70(4): 87-95.
[21]
Abma R, Kabir N. 3D interpolation of irregular data with a POCS algorithm. Geophysics, 2006, 71(5): E91-E97.
[22]
Gao J J, Chen X H, Li J Y, et al. Irregular seismic data reconstruction based on exponential threshold model of POCS method. Applied Geophysics, 2010, 7(3): 229-238.
[23]
Ozkan M K, Tekalp A M, Sezan M I. POCS based restoration of space-varying blurred images. IEEE Transactions on Image Processing, 1994, 3(4): 450-454.
[24]
Candès E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms. SIAM Multiscale Modeling and Simulation, 2006, 5(3): 861-899.
[25]
Ma J, Plonka G. The curvelet transform. IEEE Signal Processing Magazine, 2010, 27(2): 118-133.