全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于jitter采样和曲波变换的三维地震数据重建

DOI: 10.6038/cjg20130521, PP. 1637-1649

Keywords: 曲波变换,jitter采样,压缩感知,数据重建,凸集投影

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统的地震勘探数据采样必须遵循奈奎斯特采样定理,而野外数据采样可能由于地震道缺失或者勘探成本限制,不一定满足采样定理要求,因此存在数据重建问题.本文基于压缩感知理论,利用随机欠采样方法将传统规则欠采样所带来的互相干假频转化成较低幅度的不相干噪声,从而将数据重建问题转为更简单的去噪问题.在数据重建过程中引入凸集投影算法(POCS),提出采用e-√x(0≤x≤1)衰减规律的阈值参数,构建基于曲波变换三维地震数据重建技术.同时针对随机采样的不足,引入jitter采样方式,在保持随机采样优点的同时控制采样间隔.数值试验表明,基于曲波变换的重建效果优于傅里叶变换,jitter欠采样的重建效果优于随机欠采样,最后将该技术应用于实际地震勘探资料,获得较好的应用效果.

References

[1]  孟小红, 郭良辉, 张致付等. 基于非均匀快速傅里叶变换的最小二乘反演地震数据重建. 地球物理学报, 2008, 51(1): 235-241. Meng X H, Guo L H, Zhang Z F, et al. Reconstruction of seismic data with least squares inversion based on nonuniform fast Fourier transform. Chinese J. Geophys. (in Chinese), 2008, 51(1): 235-241.
[2]  Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[3]  Herrmann F J, Hennenfent G. Non-parametric seismic data recovery with curvelet frames. Geophysical Journal International, 2008, 173(1): 233-248.
[4]  Herrmann F J, Wang D, Hennenfent G, et al. Curvelet-based seismic data processing: A multiscale and nonlinear approach. Geophysics, 2008, 73(1): A1-A5.
[5]  Neelamani R, Baumstein A, Gillard D, et al. Coherent and random noise attenuation using the curvelet transform. The Leading Edge, 2008, 27(2): 240-248.
[6]  Wason H, Herrmann F J, Tim T Y. Sparsity-promoting recovery from simultaneous data: a compressive sensing approach. 81thAnnual International Meeting of Society of Exploration Geophysicists, 2011: 6-10.
[7]  唐刚, 杨慧珠. 基于泊松碟采样的地震数据压缩重建. 地球物理学报, 2010, 53(9): 2181-2188. Tang G, Yang H Z. Seismic data compression and reconstruction based on Poisson disk sampling. Chinese J. Geophys. (in Chinese), 2010, 53(9): 2181-2188.
[8]  Leneman O. Random sampling of random processes: Impulse response. Information and Control, 1966, 9(2): 347-363.
[9]  Hennenfent G, Herrmann F J. Simply denoise: wavefield reconstruction via jittered undersampling. Geophysics, 2008, 73(3): V19-V28.
[10]  唐刚. 基于压缩感知和稀疏表示的地震数据重建与去噪. 北京: 清华大学, 2010. Tang G. Seismic data reconstruction and denoising based on compressive sensing and sparse representation (in Chinese). Beijing: Tsinghua University, 2010.
[11]  Trad D, Ulryeh T, Sacchi M. Latest views of the sparse Radon transform. Geophysics, 2003, 68(1): 386-399.
[12]  Berg E D, Friedlander M P. Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput., 2008, 31(2): 890-912.
[13]  Bregman L. The method of successive projection for finding a common point of convex sets. Soviet Math, 1965, 6(3): 688-692.
[14]  Herrmann F J. Randomized sampling and sparsity: Getting more information from fewer samples. Geophysics, 2010, 75(6): WB173-WB187.
[15]  Trad D O. Five-dimensional interpolation: Recovering from acquisition constraints. Geophysics, 2009, 74(6): V123-V132.
[16]  马坚伟, 唐刚, 汤文. 基本曲波变换和压缩感知的不完备地震数据恢复. 长沙: 中国地球物理年会, 2010. Ma J W, Tang G, Tang W. Recovery of incomplete seismic data based on curvelet transform and compressed sensing (in Chinese). Changsha: Chinese Geophysical Year Meeting, 2010.
[17]  Wang J F, Ng M, Perz M. Seismic data interpolation by greedy local Radon transform. Geophysics, 2010, 75(6): 225-234.
[18]  Jin S. 5D seismic data regularization by a damped least-norm Fourier inversion. Geophysics, 2010, 75(6): 103-111.
[19]  刘国昌, 陈小宏, 郭志峰等. 基于curvelet变换的缺失地震数据插值方法. 石油地球物理勘探, 2011, 46(2): 237-245. Liu G C, Chen X H, Guo Z F, et al. Missing seismic data rebuilding by interpolation based on curvelet transform. Oil Geophysical Prospecting (in Chinese), 2011, 46(2): 237-245.
[20]  Xu S, Zhang Y, Pham D, et al. Antileakage Fourier transform for seismic data regularization. Geophysics, 2005, 70(4): 87-95.
[21]  Abma R, Kabir N. 3D interpolation of irregular data with a POCS algorithm. Geophysics, 2006, 71(5): E91-E97.
[22]  Gao J J, Chen X H, Li J Y, et al. Irregular seismic data reconstruction based on exponential threshold model of POCS method. Applied Geophysics, 2010, 7(3): 229-238.
[23]  Ozkan M K, Tekalp A M, Sezan M I. POCS based restoration of space-varying blurred images. IEEE Transactions on Image Processing, 1994, 3(4): 450-454.
[24]  Candès E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms. SIAM Multiscale Modeling and Simulation, 2006, 5(3): 861-899.
[25]  Ma J, Plonka G. The curvelet transform. IEEE Signal Processing Magazine, 2010, 27(2): 118-133.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133