全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于seislet变换的反假频迭代数据插值方法

DOI: 10.6038/cjg20130519, PP. 1619-1627

Keywords: seislet变换,反假频,压缩感知,Bregman迭代,数据插值

Full-Text   Cite this paper   Add to My Lib

Abstract:

许多地震资料处理方法需要完整的数据信息,但是受野外施工条件等因素的影响,观测系统很难记录完整的地震波场,如空间采样率不足和地震道缺失等现象,尤其是缺失的叠前地震数据时常产生空间假频现象,给后续处理流程中很多重要环节带来严重的影响.传统数据插值方法通常很难同时解决数据缺失和空间假频问题,因此开发有效的反空间假频数据插值方法具有重要的意义.本文通过同时改变时间和空间方向采样比例,利用预测误差滤波器的尺度缩放不变性,计算反空间假频地震倾角模式,构建可有效压缩含空间假频不完整地震数据的反假频seislet变换方法,通过压缩感知Bregman迭代算法,对缺失地震数据进行反假频插值.理论模型和实际数据的处理结果验证了基于seislet变换的迭代插值方法可以有效地恢复含有假频的缺失地震信息.

References

[1]  Gardner G H F, Canning A. Effects of irregular sampling on 3-D prestack migration. SEG Extended Abstract, 1994: 1553-1556.
[2]  Verschuur D J, Berkhout A J, Wapenaar C P A. Adaptive surface-related multiple elimination. Geophysics, 1992, 57(9): 1166-1177.
[3]  Zhang Y, Zhang G Q, Bleistein N. True amplitude wave equation migration arising from true amplitude one-way wave equations. Inverse Problems, 2003, 19(5): 1113-1138.
[4]  Morice S, Ronen S, Canter P, et al. The impact of positioning differences on 4D repeatability. SEG Extended Abstract, 2000: 1611-1614.
[5]  曹静杰, 王彦飞, 杨长春. 地震数据压缩重构的正则化与零范数稀疏最优化方法. 地球物理学报, 2012, 55(2): 596-607. Cao J J, Wang Y F, Yang C C. Seismic data restoration based on compressive sensing using the regularization and zero-norm sparse optimization. Chinese J. Geophys. (in Chinese), 2012, 55(2): 596-607.
[6]  Fomel S, Liu Y. Seislet transform and seislet frame. Geophysics, 2010, 75(3): V25-V38.
[7]  刘洋, Fomel S, 刘财等. 高阶seislet变换及其在随机噪声消除中的应用. 地球物理学报, 2009, 52(8): 2142-2151. Liu Y, Fomel S, Liu C, et al. High-order seislet transform and its application of random noise attenuation. Chinese J. Geophys. (in Chinese), 2009, 52(8): 2142-2151.
[8]  Liu Y, Fomel S. OC-seislet: seislet transform construction with differential offset continuation. Geophysics, 2010, 75(6): WB235-WB245.
[9]  Fomel S. Applications of plane-wave destruction filters. Geophysics, 2002, 67(6): 1946-1960.
[10]  Tikhonov A N. Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics-Doklady, 1963.
[11]  Fomel S. Shaping regularization in geophysical estimation problems. Geophysics, 2007, 72(2): R29-R36.
[12]  Crawley S. Seismic trace interpolation with nonstationary prediction error filters . California: Stanford University, 2000.
[13]  Liu Y, Fomel S. Seismic data interpolation beyond aliasing using regularized nonstationary autoregression. Geophysics, 2011, 76(5): V69-V77.
[14]  Zwartjes P M, Sacchi M D. Fourier reconstruction of nonuniformly sampled, aliased seismic data. Geophysics, 2007, 72(1): V21-V32.
[15]  唐刚, 杨慧珠. 基于泊松碟采样的地震数据压缩重建. 地球物理学报, 2010, 53(9): 2181-2188. Tang G, Yang H Z. Seismic data compression and reconstruction based on Poisson Disk sampling. Chinese J. Geophys. (in Chinese), 2010, 53(9): 2181-2188.
[16]  刘国昌, 陈小宏, 郭志峰等. 基于Curvelet变换的缺失地震数据插值方法. 石油地球物理勘探, 2011, 46(2): 237-246. Liu G C, Chen X H, Guo Z F, et al. Missing seismic data rebuilding by interpolation based on Curvelet transform. Oil Geophysical Prospecting (in Chinese), 2011, 46(2): 237-246.
[17]  Fomel S. Three-dimensional seismic data regularization . California: Stanford University, 2001.
[18]  Gao J, Chen X H, Li J, et al. Irregular seismic data reconstruction based on exponential threshold model of POCS method. Applied Geophysics, 2010, 7(3): 229-238.
[19]  Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for total variation-based image restoration. Multiscale Modeling & Simulation, 2005, 4(2): 460-489.
[20]  Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for L1 minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168.
[21]  Daubechies I, Defries M, de Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457.
[22]  Donoho D L. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
[23]  Sweldens W. Lifting scheme: A new philosophy in biorthogonal wavelet constructions. Wavelet Applications in Signal and Image Processing III, Proceedings of SPIE 2569, 1995: 68-79.
[24]  Sweldens W, Schroder P. Building your own wavelets at home, Wavelets in Computer Graphics. ACM SIGGRAPH Course notes, 1996: 15-87.
[25]  Mazzucchelli P, Rocca F. Regularizing land acquisitions using shot continuation operators: effects on amplitudes. SEG Extended Abstract, 1999: 1995-1998.
[26]  辛可锋, 王华忠, 王成礼等. 叠前地震数据的规则化. 石油地球物理勘探, 2002, 37(4): 311-317. Xin K F, Wang H Z, Wang C L, et al. Regularization of pre-stack seismic data. Oil Geophysical Prospecting (in Chinese), 2002, 37(4): 311-317.
[27]  管路平, 唐亚勋, 王华忠. 共偏移距道集平面波叠前时间偏移与反偏移. 地球物理学报, 2009, 52(5): 1301-1309. Guan L P, Tang Y X, Wang H Z. Common-offset plane-wave prestack time migration and demigration. Chinese J. Geophys. (in Chinese), 2009, 52(5): 1301-1309.
[28]  Claerbout J F. Earth Soundings Analysis: Processing Versus Inversion. Boston: Blackwell Scientific Publications, 1992.
[29]  李信富, 李小凡. 分形插值地震数据重建方法研究. 地球物理学报, 2008, 51(4): 1196-1201. Li X F, Li X F. Seismic data reconstruction with fractal interpolation. Chinese J. Geophys. (in Chinese), 2008, 51(4): 1196-1201.
[30]  Wang Y B, Luo Y, Schuster G T. Interferometric interpolation of missing seismic data. Geophysics, 2009, 74(3): SI37-SI45.
[31]  高建军, 陈小宏, 李景叶等. 基于非均匀Fourier变换的地震数据重建方法研究. 地球物理学进展, 2009, 24(5): 1741-1747. Gao J J, Chen X H, Li J Y, et al. Study on reconstruction of seismic data based on nonuniform Fourier transform. Progress in Geophys. (in Chinese), 2009, 24(5): 1741-1747.
[32]  Xu S, Zhang Y, Pham D, et al. Antileakage Fourier transform for seismic data regularization. Geophysics, 2005, 70(4): V87-V95.
[33]  孟小红, 郭良辉, 张致付等. 基于非均匀快速傅里叶变换的最小二乘反演地震数据重建. 地球物理学报, 2008, 51(1): 235-241. Meng X H, Guo L H, Zhang Z F, et al. Reconstruction of seismic data with least squares inversion based on nonuniform fast Fourier transform. Chinese J. Geophys. (in Chinese), 2008, 51(1): 235-241.
[34]  张红梅, 刘洪. 基于稀疏离散τ-p变换的叠后地震道内插. 石油地球物理勘探, 2006, 41(3): 281-285. Zhang H M, Liu H. Interpolation of poststack seismic traces based on sparse discrete τ-p transform. Oil Geophysical Prospecting (in Chinese), 2006, 41(3): 281-285.
[35]  王维红, 裴江云, 张剑锋. 加权抛物Radon变换叠前地震数据重建. 地球物理学报, 2007, 50(3): 851-859. Wang W H, Pei J Y, Zhang J F. Prestack seismic data reconstruction using weighted parabolic Radon transform. Chinese J. Geophys. (in Chinese), 2007, 50(3): 851-859.
[36]  Candés E. Compressive sampling. Proceedings of International Congress of Mathematicians, 2006: 1433-1452.
[37]  Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[38]  Abma R, Kabir N. 3D interpolation of irregular data with a POCS algorithm. Geophysics, 2006, 71(6): E91-E97.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133