夏洪瑞, 陈德刚, 周开明. 剩余动校正量的拾取与消除. 石油地球物理勘探, 1997, 32(6): 872-877. Xia H R, Chen D G, Zhou K M. Pickup and removal of residual normal moveout. Oil Geophysical Prospecting (in Chinese), 1997, 32(6): 872-877.
[2]
Hinkley D, Bear G W, Dawson C. Prestack gather flattening for AVO. 74th Annual International Meeting, SEG, Expanded Abstracts, 2004: 271-273.
[3]
Duveneck E, Traub B. Automatic moveout correction by local event correlations on coherency-enhanced gathers. 76th Annual International Meeting, SEG, Expanded Abstracts, 2006: 3036-3040.
[4]
Lu W K, Liu J. Estimation and removal of the residual normal moveout based on the S-transform. Congress on Image and Signal Processing, 2008: 573-576.
[5]
Gulunay N, Magesan M, Roende H. Gather flattening. The Leading Edge, 2007, 26(12):1538-1543.
[6]
Gulunay N. Polarity blind and polarity sensitive gather flattening methods. 74th EAGE Conference and Exhibition, 2012.
[7]
林伯香, 孙建国. 相位替换法剩余时差校正. 石油物探, 2001, 40(3): 15-22. Lin B X, Sun J G. Residual moveout correction by using phase replacement. Geophysical Prospecting for Petroleum (in Chinese), 2001, 40(3): 15-22.
[8]
王开燕, 李慧, 官波等. 相位剩余时差校正方法在提高分辨率中的应用. 大庆石油学院学报, 2007, 31(6): 14-17. Wang K Y, Li H, Guan B, et al. Application of residual moveout correction to the improvement of resolution. Journal of Daqing Petroleum Institute (in Chinese), 2007, 31(6): 14-17.
[9]
王云专, 杨立伟, 李素华. 剩余时差校正及泊松比反演. 地球物理学进展, 2006, 21(1): 214-218. Wang Y Z, Yang L W, Li S H. Residual moveout correction and Poisson''s ratio inversion. Progress in Geophysics (in Chinese), 2006, 21(1): 214-218.
[10]
Lichman E. Automated phase-based moveout correction. 图17 图16的局部放大图 (a)图16a右边框图放大结果;(b)图16b右边框图放大结果;(c)图16c右边框图放大结果; (d)图16a左边框图放大结果;(e)图16b左边框图放大结果;(f)图16c左边框图放大结果. Fig.17 The zoomed area of the Fig.16 (a)The zoomed area of the right rectangle in Fig.16a; (b)The zoomed area of the right rectangle in Fig.16b; (c)The zoomed area of the right rectangle in Fig.16c; (d)The zoomed area of the left rectangle in Fig.16a; (e)The zoomed area of the left rectangle in Fig.16b; (f)The zoomed area of the left rectangle in Fig.16c. 69th Annual International Meeting, SEG, Expanded Abstracts, 1999: 1150-1153.
[11]
Liu G C, Fomel S, Jin L, et al. Stacking seismic data using local correlation. Geophysics, 2009, 74(3): V43-V48.
[12]
Liu G C, Fomel S, Chen X H. Stacking angle-domain common-image gathers for normalization of illumination. Geophysical Prospecting, 2011, 59(2): 244-255.
[13]
Perez G, Marfurt K J. Warping prestack imaged data to improve stack quality and resolution. Geophysics, 2008, 73(2): P1-P7.
[14]
Wolberg G. Digital image warping. IEEE Computer Society Press, 1990.
[15]
Lee S Y, Chwa K Y, Hahn J, et al. Image morphing using deformation techniques. Journal of Visualization and Computer Animation, 1996, 7(1): 3-23.
[16]
郑亚琴, 田心. 医学图像配准技术研究进展. 国际生物医学工程杂志, 2006, 29(2): 88-92. Zheng Y Q, Tian X. Development of medical image registration. International Journal of Biomedical Engineering (in Chinese), 2006, 29(2): 88-92.
[17]
Nickel M, Sonneland L. Non-rigid matching of migrated time-lapse seismic. 69th Annual International Meeting, SEG, Expanded Abstracts, 1999: 872-875.
[18]
Rickett J E, Lumley D E. Cross-equalization data processing 图18 图17框图的局部放大图 (a)图17b框图放大结果;(b)图17c框图放大结果; (c)图17e框图放大结果;(d)图17f框图放大结果. Fig.18 The zoomed area of the Fig.17 (a)The zoomed area of the rectangle in Fig.17b; (b)The zoomed area of the rectangle in Fig.17c; (c)The zoomed area of the rectangle in Fig.17e; (d)The zoomed area of the rectangle in Fig.17f. for time-lapse seismic reservoir monitoring: A case study from the Gulf of Mexico. Geophysics, 2001, 66(4): 1015-1205.
[19]
Hall S A, MacBeth C, Barkved O I, et al. Cross-matching with interpreted warping of 3D streamer and 3D ocean-bottom-cable data at Valhall for time-lapse assessment. Geophysical Prospecting, 2005, 53(2): 283-297.
[20]
Hall S A. A methodology for 7D warping and deformation monitoring using time-lapse seismic data. Geophysics, 2006, 71(4): O21-O31.
[21]
郭念民, 吴国忱. 非重复采集时移地震正演模拟及可行性分析. 地球物理学进展, 2012, 27(1): 232-245. Guo N M, Wu G C. Forward-modeling and feasibility study of non-repeating acquired time-lapse seismic exploration. Progress in Geophys. (in Chinese), 2012, 27(1): 232-245.
[22]
赵伟. 中国海上时移地震技术应用的可行性研究. 勘探地球物理进展, 2003, 26(1): 30-34. Zhao W. Feasibility study on time-lapse seismic offshore China. Progress in Exploration Geophysics (in Chinese), 2003, 26(1): 30-34.
[23]
Gulunay N, Gamar F, Hoeber H, et al. Robust residual gather flattening. 77th Annual International Meeting, SEG, Expanded Abstracts, 2007: 229-233.
[24]
慎国强, 王玉梅, 孟宪军等. 基于时频分析的地震道集校平技术应用. 中国石油大学学报 (自然科学版), 2010, 34(1): 34-36, 45. Shen G Q, Wang Y M, Meng X J, et al. Application of seismic gather flattening technique based on time-frequency analysis. Journal of China University of Petroleum (Edition of Natural Science) (in Chinese), 2010, 34(1): 34-36, 45.
[25]
Gulunay N, Magesan M, Roende H. Gather flattening based on event tracking for each time sample. 70th EAGE Conference and Exhibition, 2008.
[26]
Grubb H, Tura A, Hanitzsch C. Estimating and interpreting velocity uncertainty in migrated images and AVO attributes. Geophysics, 2001, 66(4): 1208-1216.
[27]
李振春, 张军华. 地震数据处理方法. 东营: 中国石油大学出版社, 2006. Li Z C, Zhang J H. The Method of Seismic Data Processing. Dongying: China University of Petroleum Press, 2006.
[28]
Barnea D I, Silverman H F. A class of algorithms for fast digital image registration. IEEE Trans. Computers, 1972, 21(2): 179-186.
[29]
Perez G, Marfurt K J. Fine-tuning your seismic image: prestack data warping to improve stack quality and resolution. 76th Annual International Meeting, SEG, Expanded Abstracts, 2006: 2475-2479.
[30]
Pan J J, Tang Y Y, Pan B C. The algorithm of fast mean filtering. Wavelet Analysis and Pattern Recognition Conference, 2007: 244-248.
[31]
Rakshit S, Ghosh A, Shankar B U. Fast mean filtering technique (FMFT). Pattern Recognition, 2007, 40(3): 890-897.
[32]
Steger C. An unbiased detector of curvilinear structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(2): 113-125.
[33]
Steger C. Unbiased extraction of curvilinear structures from 2D and 3D images . München: Technical University of München, 1998.
[34]
雷鸣, 张广军. 基于互相关的图像匹配亚像素定位. 光电工程, 2008, 35(5): 108-113. Lei M, Zhang G J. Image orientation algorithm with subpixel accuracy based on correlative matching method. Opto-Electronic Engineering (in Chinese), 2008, 35(5): 108-113.