全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

机载激光雷达森林叶面积指数反演研究

DOI: 10.6038/cjg20130505, PP. 1467-1475

Keywords: 激光雷达,叶面积指数,穿透指数,回波强度,森林植被

Full-Text   Cite this paper   Add to My Lib

Abstract:

叶面积指数(LAI)是分析冠层结构最常用的参数之一,它控制着植被的生物物理过程,如光合、呼吸、蒸腾、碳循环和降水截获等,因此快速、可靠和客观地评价LAI非常重要.本文发展了激光穿透指数(LPI)的简化计算方法,首次利用校正后的回波强度计算出LPI,以LPI为变量基于Beer-Lambert定律实现了甘肃大野口研究区森林LAI反演,并且与原始回波强度和回波数反演LAI的精度进行对比,结果发现通过距离和角度校正后的回波强度值能提高LAI反演精度.为了评价模型的可靠性和泛化性能,用留一法交叉验证程序(LOOCV)对最佳反演模型进行了验证,表明该模型没有过度拟合,具有很好的泛化能力.最后,用没有参加建模的16个实测LAI对预测值进行精度验证(R2=0.810,RMSE=0.198),发现校正后的回波强度反演山区森林LAI精度较高.本文还对激光雷达LAI反演结果与传统光学TM影像的反演结果进行了对比分析,结果表明机载激光雷达反演LAI精度(R2=0.825,RMSE=0.165)高于光学TM遥感数据(R2=0.605,RMSE=0.257),因此,可用激光雷达数据实现研究区的高精度LAI反演,为生态环境研究提供可靠的基础数据.

References

[1]  张佳华, 符淙斌, 延晓冬等. 全球植被叶面积指数对温度和降水的响应研究. 地球物理学报, 2002, 45(5): 631-637. Zhang J H, Fu C B, Yan X D, et al. Global respondence analysis of LAI versus surface air temperature and precipitation variations. Chinese J. Geophys. (in Chinese), 2002, 45(5): 631-637.
[2]  Chen J M, Pavlic G, Brown L, et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sens. Environ., 2001, 80(1): 165-184.
[3]  Chen J M, Cihlar J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens. Environ., 1996, 55(2): 153-162.
[4]  王希群, 马履一, 贾忠奎等. 叶面积指数的研究和应用进展. 生态学杂志, 2005, 24(5): 537-541. Wang X Q, Ma L Y, Jia Z K, et al. Research and application advances in leaf area index (LAI). Chinese J. Ecol. (in Chinese), 2005, 24(5): 537-541.
[5]  常学向, 赵文智, 赵爱芬. 黑河中游二白杨叶面积指数动态变化及其与耗水量的关系. 冰川冻土, 2006, 28(1): 85-901. Chang X X, Zhao W Z, Zhao A F. Variation of leaf area index of Gansu Poplar and its relation to water consumption during growing season in the middle reaches of Heihe river. J. Glaciol. Geocryol. (in Chinese), 2006, 28(1): 85- 901.
[6]  蒙继华, 吴炳方, 李强子. 全国农作物叶面积指数遥感估算方法. 农业工程报, 2007, 23(2): 161-167. Meng J H, Wu B F, Li Q Z. Method for estimating crop leaf area index of China using remote sensing. Trans. CSAE (in Chinese), 2007, 23(2): 161-167.
[7]  Gray J, Song C G. Mapping leaf area index using spatial, spectral, and temporal information from multiple sensors. Remote Sens. Environ., 2012, 119: 173-183.
[8]  Koetz B, Baret F, Poilvé H, et al. Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens. Environ., 2005, 95(1): 115-124.
[9]  Eriksson H M, Eklundh L, Kuusk A, et al. Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates. Remote Sens. Environ., 2006, 103(4): 408-418.
[10]  Peduzzi A, Wynne R H, Fox T R, et al. Estimating leaf area index in intensively managed pine plantations using airborne laser scanner data. Forest Ecol. Manag., 2012, 270: 54-65.
[11]  庞勇, 赵峰, 李增元等. 机载激光雷达平均树高提取研究. 遥感学报, 2008, 12(1): 152-158. Pang Y, Zhao F, Li Z Y, et al. Forest height inversion using airborne Lidar technology. J. Remote Sens. (in Chinese), 2008, 12(1): 152-158.
[12]  Lefsky M A, Hudak A T, Cohen W B, et al. Geographic variability in LiDAR predictions of forest stand structure in the Pacific Northwest. Remote Sens. Environ., 2005, 95(4): 532-548.
[13]  Solberg S. Mapping gap fraction, LAI and defoliation using various ALS penetration variables. Int. J. Remote Sens., 2010, 31(5): 1227-1244.
[14]  Richardson J J, Moskal L M, Kim S H, et al. Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR. AGR Forest Meteor., 2009, 149(6-7): 1152-1160.
[15]  Riao D, Valladares F, Condés S, et al. Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests. AGR Forest Meteor., 2004, 124(3-4): 269-275.
[16]  Baltsavias E P. Airborne laser scanning: Basic relations and formulas. ISPRS J. Photogramm. Remote Sens., 1999, 54(2-3): 199-214.
[17]  Mesas-Carrascosa F J, Castillejo-González I L, Orden M S, et al. Combining LiDAR intensity with aerial camera data to discriminate agricultural land uses. Comput. Electron. Agr., 2012, 84: 36-46.
[18]  Hfle B, Pfeifer N. Correction of laser scanning intensity data: data and model-driven approaches. ISPRS J. Photogramm. Remote Sens., 2007, 62 (6): 415-433.
[19]  García M, Riao D, Chuvieco E, et al. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens. Environ., 2010, 114(4): 816-830.
[20]  Lefsky M A, Cohen W B, Acker S A, et al. Lidar remote sensing of the canopy structure and biophysical properties of douglas-fir western hemlock forests. Remote Sens. Environ., 1999, 70(3): 339-361.
[21]  Stenberg P, Rautiainen M, Manninen T, et al. Boreal forest leaf area index from optical satellite images: model simulations and empirical analyses using data from central Finland. Boreal. Environ. Res., 2008, 13: 433-443.
[22]  Soudani K, Francois C, Le Maire G, et al. Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sens. Environ., 2006, 102(1-2): 161-175.
[23]  Kaufman Y J, Tanré D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE T. Geosci. Remote, 1992, 30(2): 261-270.
[24]  Sasaki T, Imanishi J, Ioki K, et al. Estimation of leaf area index and canopy openness in broad-leaved forest using an airborne laser scanner in comparison with high-resolution near-infrared digital photography. Landsc. Ecol. Eng., 2008, 4(1): 47-55.
[25]  谭一波, 赵仲辉. 叶面积指数的主要测定方法. 林业调查规划, 2008, 33(3): 45-48. Tan Y B, Zhao Z H. The main methods for determining leaf area index. Forest Inventory and Planning (in Chinese), 2008, 33(3): 45-48.
[26]  Wang Q, Adiku S, Tenhunen J, et al. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ., 2005, 94(2): 244-255.
[27]  Colombo R, Bellingeri D, Fasolini D, et al. Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens. Environ., 2003, 86(1): 120-131.
[28]  Zhao K G, Popescu S. Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sens. Environ., 2009, 113(8): 1628-1645.
[29]  Koch B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J. Photogramm. Remote Sens., 2010, 65(6): 581-590.
[30]  Morsdorf F, Koetz B, Meier E, et al. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens. Environ., 2006, 104(1): 50-61.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133