全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

磁偏角和热层风对中纬电离层TEC经度分布的影响

DOI: 10.6038/cjg20130501, PP. 1425-1434

Keywords: 中纬电离层,总电子含量的经度差异,热层风,磁偏角,全球导航系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用北美、南美和大洋洲三个地区的电离层TEC数据,分析了磁偏角为零的经度线两侧中纬电离层TEC的差异.结果表明,在2001年至2010年的几乎所有季节,在磁偏角为零的经度东西两侧,北美、南美和大洋洲中纬电离层TEC都存在规则性的差异;中纬电离层TEC的这种经度差异显著地依赖地方时,对季节和太阳活动水平也有不同程度的依赖.地磁场影响下电离层与热层动力学耦合的分析表明,磁偏角的经度变化和热层风的地方时变化两者的共同作用是引起磁偏角为零的经度两侧中纬电离层TEC差异的重要原因之一.

References

[1]  徐继生, 朱劼, 程光晖. 2004年11月强磁暴期间武汉电离层TEC的响应和振幅闪烁特征的GPS观测. 地球物理学报, 2006, 49(4): 950-956 Xu J S, Zhu J, Cheng G H. GPS observations of ionospheric effects of the major storm of Nov.7-10, 2004. Chinese J. Geophys. (in Chinese), 2006, 49(4): 846-853.
[2]  Sagawa E, Immel T J, Frey H U, et al. Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J. Geophys. Res., 2005, 110: A11302, doi: 10.1029/2004JA010848.
[3]  Zhang S R, Foster J C, Coster A J, et al. East-West Coast differences in total electron content over the continental US. Geophys. Res. Lett., 2011, 38: L19101, doi: 10.1029/2011 GL049116.
[4]  Zhang S R, Coster A J, Holt J M, et al. Ionospheric longitudinal variations at midlatitudes: Incoherent scatter radar observation at Millstone Hill. Sci. China Ser. E-Tech. Sci., 2012, 55(5): 1153-1160, doi: 10.1007/s11431-012-4784-y.
[5]  Rishbeth H. How the thermospheric circulation affects the ionospheric F2-layer. J. Atmos. Sol. Terr. Phys., 1998, 60(14): 1385-1402, doi: 10.1016/S1364-6826(98)00062-5.
[6]  Challinora R A, Ecclesa D. Longitudinal variations of the mid-latitude ionosphere produced by neutral-air winds-I. Neutral-air winds and ionospheric drifts in the northern and southern hemispheres. J. Atmos. Terr. Phys., 1971, 33(3): 363-369.
[7]  Hargreaves J K. The Solar-Terrestrial Environment. Cambridge: Cambridge University Press, 1992.
[8]  Kelley M C. The Earth''s Ionosphere: Plasma Physics & Electrodynamics. 2nd ed. Cambridge: Academic Press, Elsevier Inc., 2009, ISBN 13: 978-0-12-088425-4.
[9]  Rideout W, Coster A. Automated GPS processing for global total electron content data. GPS Solutions, 2006, 10(3): 219-228, doi: 10.1007/s10291-006-0029-5.
[10]  Mannucci A J, Wilson B D, Yuan D N, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci., 1998, 33(3): 565-582.
[11]  International Association of Geomagnetism and Aeronomy Working Group V-MOD. International geomagnetic reference field: The eleventh generation. Geophys. J. Int., 2010, 183(3): 1216-1230, doi: 10.1111/j.1365-246X.2010.04804.x.
[12]  Drob D P, Emmert J T, Crowley G, et al. An empirical model of the Earth''s horizontal wind fields: HWM07. J. Geophys. Res., 2008, 113: A12304, doi: 10.1029/2008JA013668.
[13]  Memdillo M. Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys., 2006, 44(4): 1-47.
[14]  Saito A, Fukao S, Miyazaki S. High resolution mapping of TEC perturbations with the GSI GPS Network over Japan. Geophys. Res. Lett., 1998, 25(16): 3079-3082.
[15]  Xu L, Cheng G H, Xu J S, et al. Global ionospheric TEC response to a strong magnetic storm. Sci. China Ser. E-Tech. Sci., 2008, 51(10): 1788-1902.
[16]  England S L, Immel T J, Huba J D, et al. Modeling of multiple effects of atmospheric tides on the ionosphere: An examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J. Geophys. Res., 2010, 115: A05308, doi: doi: 10.1029/2009JA014894.
[17]  Wan W, Liu L, Pi X, et al. Wavenumber-4 patterns of the total electron content over the low latitude ionosphere. Geophys. Res. Lett., 2008, 35(12): L12104, doi: 10.1029/2008GL033755.
[18]  Luan X L, Wang W B, Burns A, et al. Midlatitude nighttime enhancement in F region electron density from global COSMIC measurements under solar minimum winter condition. J. Geophys. Res., 2008, 113: A09319, doi: 10.1029/2008JA013063.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133