赵林. 青藏高原多年冻土活动层的冻融过程以及季节冻土的变化. 北京: 中国科学院, 2004. 图8 左图:所选地物点在Google Earth影像上的位置;右图:所选地物点时间形变序列 Fig.8 Left: The location of the chosen ground points in the Google Earth images; Right: Deformation time series of the chosen ground points Zhao L. The freezing-thawing processes of active layer and changes of seasonally frozen ground on the Tibet plateau (in Chinese). Beijing: Chinese Academy of Sciences, 2004.
[2]
甄春相. 青藏线多年冻土遥感调查工程地质分区. 铁道勘查, 2004, 30(4): 1-4. Zhen C X. Engineering geological classification of Qinghai-Tibet railway permafrost by remote sensing technology. Railway Investigation and Surveying (in Chinese), 2004, 30(4): 1-4.
Ferreti A, Prati C, Rocca F. Non-linear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202-2212.
[5]
Garballo G F, Fieguth P W. Probabilistic cost functions for network flow phase unwrapping. IEEE Transactions on Geoscience and Remote Sensing, 2001, 38(5): 2192-2201.
[6]
冯向阳. 试论西藏当雄—羊八井活动构造带的基本特征及其对青藏铁路安全运营的影响. 地球学报, 2007, 28(2): 173-180. Feng X Y. Basic Characteristics of the Damxung-Yangbajain active tectonic zone in Tibet and its influence on the safety of the Qing-zang railway. Acta Geoscientica Sinica (in Chinese), 2007, 28(2): 173-180.
[7]
Usai S, Klees R. SAR interferometry on a very long time scale: a study of the interferometric characteristics of man-made features. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(4): 2118-2123.
[8]
Usai S. A new approach for long term monitoring of deformations by differential SAR interferometry. Delft University of Technology, 2001.
[9]
王平. 基于D-InSAR技术的青藏高原区域冻土变形监测研究. 长沙: 中南大学, 2008. Wang P. Using D-InSAR to monitor the motion of frozen ground in Qinghai-Tibet Plateau(in Chinese). Changsha: School of Info-Physics and Geomatics Engineering, Centrol South University, 2008.
[10]
Colesanti C, Ferretti A, Novali F, et al. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1685-1701.
[11]
Kampes B M, Hanseen R F. Ambiguity resolution for permanent scatterer interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2446-2453.
[12]
Ferreti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.
[13]
Shuttle Radar Topography Mission: The mission to map the world.. Available:www.jpl.nasa.gov/strm.
[14]
Brown C G, Sarabandi K, Pierce L E. Validation of the shuttle radar topography mission height data. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1707-1715.
[15]
Li Z W, Ding X L, Zheng D W, et al. Least squares-based filter for remote sensing image noise reduction. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7): 2044-2049.
[16]
Costantini M, Rosen P. A generalized phase unwrapping approach for sparse data. IGARSS, 1999, 1(10): 267-269.
[17]
邢学敏, 丁晓利, 朱建军等. CRInSAR与PSInSAR联合探测区域线性沉降研究. 地球物理学报, 2011, 54(5): 1193-1204. Xing X M, Ding X L, Zhu J J, et al. Detecting the regional linear subsidence based on CRInSAR and PSInSAR integration. Chinese J. Geophys. (in Chinese), 2011, 54(5): 1193-1204.
[18]
吴青柏, 朱元林, 施斌. 工程活动下的冻土环境研究. 冰川冻土, 2001, 23(2): 200-207. Wu Q B, Zhu Y L, Shi B. Study of frozen soil environment relating to engineering activities. Journal of Glaciology and Geocryology (in Chinese), 2001, 23(2): 200-207.
[19]
王绍林, 赵林, 李述训等. 青藏公路多年冻土段沥青路面热量平衡及路基稳定性研究. 冰川冻土, 2001, 23(2): 111-118. Wang S L, Zhao L, Li S X, et al. Study on thermal balance of asphalt pavement and roadbed stability in permafrost regions of the Qinghai-Tibetan Highway. Journal of Glaciology and Geocryology (in Chinese), 2001, 23(2): 111-118.
[20]
张鲁新. 青藏铁路高原冻土区地温变化规律及其对路基稳定性影响. 中国铁道科学, 2000, 21(1): 37-47. Zhang L X. Regularity of ground temperature variation in Qinghai-Tibet Plateau permafrost region and its effect on subgrade stability. China Railway Science (in Chinese), 2000, 21(1): 37-47.
[21]
原思成, 张鲁新, 韩利民等. 青藏铁路冻土区环境问题对工程安全可靠性影响. 工程地质学报, 2006, 14(4): 433-437. Yuan S C, Zhang L X, Han L M, et al. Influences of environmental conditions on construction safety reliability of Qinghai-Tibet railway in permafrost region. Journal of Engineering Geology (in Chinese), 2006, 14(4): 433-437.
[22]
徐学祖, 王家澄, 张立新. 冻土物理学. 北京: 科学出版社, 2001. Xu X Z, Wang J C, Zhang L X. Physics of Frozen Soils (in Chinese). Beijing: Publishing House of Science, 2001.
[23]
Gabrile A K, Gikdstein R M, Zebker H A. Mapping small elevation changes over large areas: differential radar interferometry. Journal of Geophysical Research, 1989, 94(7): 9183-9191.
[24]
Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 1993, 364(6433): 138-142.
[25]
李震, 李新武, 刘永智等. 差分干涉SAR冻土形变检测方法研究. 冰川冻土, 2004, 26(4):389-396. Li Z, Li X W, Liu Y Z, et al. Detecting the displacement field of thaw settlement by means of SAR interferometry. Journal of Glaciology and Geocryology (in Chinese), 2004, 26(4):389-396.
[26]
谢酬, 李震, 李新武. 基于PALSAR数据的青藏高原冻土形变检测方法研究. 国土资源遥感, 2008, (3): 15-19. Xie C, Li Z, Li X W. A study of deformation in permafrost regions of Qinghai-Tibet plateau based on ALOS/PALSAR D-InSAR interferometry. Remote Sensing for Land and Resources (in Chinese), 2008, (3): 15-19.
[27]
许文斌, 李志伟, 丁晓丽等. 利用MERIS水汽数据改正ASAR干涉图中的大气影响. 地球物理学报, 2010, 53(5): 1073-1084. Xu W B, Li Z W, Ding X L, et al. Correctiing atmospheric effects in ASAR interferogram with MERIS integrated water vapor data. Chinese J. Geophys. (in Chinese), 2010, 53(5): 1073-1084.
[28]
Zebker H A, Villasenor J. Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 950-959.
[29]
Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
[30]
Casu F, Manzo M, Lanari R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sensing of Environment, 2006, 102(3-4): 195-210.
[31]
Lanari R, Casu F, Manzo M, et al. Application of the SBAS-DInSAR technique to fault creep: A case study of the Hayward fault, California. Remote Sensing of Environment, 2007, 109(1): 20-28.
[32]
吴珍汉, 胡道功, 吴中海等. 西藏羊八井—当雄—谷露地堑的地质特征与形成时代. // 青藏高原地质过程与环境灾害效应文集. 北京: 地震出版社, 2005: 228-234. Wu Z H, Hu D G, Wu Z H, et al. The geological features and generating periods of Yangbajian-Damxung-Gulu graben in Qing-Hai Tibet. // Papers of Qinghai-Tibet Plateau Geological Processes and Effects of Environmental Disasters (in Chinese), 2005: 228-234.
[33]
中国科普博览: http://www.kepu.net.cn/gb/ China Meteorological Data Sharing Service System:http://cdc.cma.gov.cn/home.do;jsessionid=229555BA015190 C347E7A1E78C954DBC.