全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SBAS-InSAR技术监测青藏高原季节性冻土形变

DOI: 10.6038/cjg20130506, PP. 1476-1486

Keywords: 冻土,InSAR,SBAS(Smallbaselinesubset),青藏高原,形变监测

Full-Text   Cite this paper   Add to My Lib

Abstract:

冻土的冻结和融化的反复交替会造成地质环境与结构的破坏,从而导致房屋和道路等地面工程建筑物的地基破裂或者塌陷,还会引起山体滑坡、洪水暴发以及冰川移动等.因此,监测冻土形变对确保冻土区工程建筑的稳定性和安全性,同时保证冻土区社会经济可持续发展具有重要的意义.目前,在冻土监测方面并没有能大面积监测冻土形变时间演化情况的有效方法,本文提出将InSAR技术中的小基线集方法(SBAS-InSAR)应用于监测冻土来获取其形变时间序列中.考虑到冻土形变呈现明显的季节性特征,本文提出利用周期形变模型来代替传统SBAS方法中的线性形变模型,从而更好地分离出高程残差和大气误差.利用ENVISAT卫星获取的21景ASAR影像图作为实验数据,采用改进的SBAS技术成功获取了青藏高原从羊八井站至当雄站铁路段冻土区的地表形变时间序列图,揭示了该冻土区从2007年到2010年的季节性形变演化情况.通过与研究地区温度变化的联合分析,发现所得到的地表形变结果与冻土的物理变化规律非常吻合,证明了SBAS-InSAR技术在冻土形变监测中具有良好的发展应用前景.

References

[1]  赵林. 青藏高原多年冻土活动层的冻融过程以及季节冻土的变化. 北京: 中国科学院, 2004. 图8 左图:所选地物点在Google Earth影像上的位置;右图:所选地物点时间形变序列 Fig.8 Left: The location of the chosen ground points in the Google Earth images; Right: Deformation time series of the chosen ground points Zhao L. The freezing-thawing processes of active layer and changes of seasonally frozen ground on the Tibet plateau (in Chinese). Beijing: Chinese Academy of Sciences, 2004.
[2]  甄春相. 青藏线多年冻土遥感调查工程地质分区. 铁道勘查, 2004, 30(4): 1-4. Zhen C X. Engineering geological classification of Qinghai-Tibet railway permafrost by remote sensing technology. Railway Investigation and Surveying (in Chinese), 2004, 30(4): 1-4.
[3]  中国气象科学数据共享服务网: http://cdc.cma.gov.cn/ home.do;jsessionid= 229555BA015190 C347E7A 1E78C954DBC
[4]  Ferreti A, Prati C, Rocca F. Non-linear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202-2212.
[5]  Garballo G F, Fieguth P W. Probabilistic cost functions for network flow phase unwrapping. IEEE Transactions on Geoscience and Remote Sensing, 2001, 38(5): 2192-2201.
[6]  冯向阳. 试论西藏当雄—羊八井活动构造带的基本特征及其对青藏铁路安全运营的影响. 地球学报, 2007, 28(2): 173-180. Feng X Y. Basic Characteristics of the Damxung-Yangbajain active tectonic zone in Tibet and its influence on the safety of the Qing-zang railway. Acta Geoscientica Sinica (in Chinese), 2007, 28(2): 173-180.
[7]  Usai S, Klees R. SAR interferometry on a very long time scale: a study of the interferometric characteristics of man-made features. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(4): 2118-2123.
[8]  Usai S. A new approach for long term monitoring of deformations by differential SAR interferometry. Delft University of Technology, 2001.
[9]  王平. 基于D-InSAR技术的青藏高原区域冻土变形监测研究. 长沙: 中南大学, 2008. Wang P. Using D-InSAR to monitor the motion of frozen ground in Qinghai-Tibet Plateau(in Chinese). Changsha: School of Info-Physics and Geomatics Engineering, Centrol South University, 2008.
[10]  Colesanti C, Ferretti A, Novali F, et al. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1685-1701.
[11]  Kampes B M, Hanseen R F. Ambiguity resolution for permanent scatterer interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2446-2453.
[12]  Ferreti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.
[13]  Shuttle Radar Topography Mission: The mission to map the world.. Available:www.jpl.nasa.gov/strm.
[14]  Brown C G, Sarabandi K, Pierce L E. Validation of the shuttle radar topography mission height data. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1707-1715.
[15]  Li Z W, Ding X L, Zheng D W, et al. Least squares-based filter for remote sensing image noise reduction. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7): 2044-2049.
[16]  Costantini M, Rosen P. A generalized phase unwrapping approach for sparse data. IGARSS, 1999, 1(10): 267-269.
[17]  邢学敏, 丁晓利, 朱建军等. CRInSAR与PSInSAR联合探测区域线性沉降研究. 地球物理学报, 2011, 54(5): 1193-1204. Xing X M, Ding X L, Zhu J J, et al. Detecting the regional linear subsidence based on CRInSAR and PSInSAR integration. Chinese J. Geophys. (in Chinese), 2011, 54(5): 1193-1204.
[18]  吴青柏, 朱元林, 施斌. 工程活动下的冻土环境研究. 冰川冻土, 2001, 23(2): 200-207. Wu Q B, Zhu Y L, Shi B. Study of frozen soil environment relating to engineering activities. Journal of Glaciology and Geocryology (in Chinese), 2001, 23(2): 200-207.
[19]  王绍林, 赵林, 李述训等. 青藏公路多年冻土段沥青路面热量平衡及路基稳定性研究. 冰川冻土, 2001, 23(2): 111-118. Wang S L, Zhao L, Li S X, et al. Study on thermal balance of asphalt pavement and roadbed stability in permafrost regions of the Qinghai-Tibetan Highway. Journal of Glaciology and Geocryology (in Chinese), 2001, 23(2): 111-118.
[20]  张鲁新. 青藏铁路高原冻土区地温变化规律及其对路基稳定性影响. 中国铁道科学, 2000, 21(1): 37-47. Zhang L X. Regularity of ground temperature variation in Qinghai-Tibet Plateau permafrost region and its effect on subgrade stability. China Railway Science (in Chinese), 2000, 21(1): 37-47.
[21]  原思成, 张鲁新, 韩利民等. 青藏铁路冻土区环境问题对工程安全可靠性影响. 工程地质学报, 2006, 14(4): 433-437. Yuan S C, Zhang L X, Han L M, et al. Influences of environmental conditions on construction safety reliability of Qinghai-Tibet railway in permafrost region. Journal of Engineering Geology (in Chinese), 2006, 14(4): 433-437.
[22]  徐学祖, 王家澄, 张立新. 冻土物理学. 北京: 科学出版社, 2001. Xu X Z, Wang J C, Zhang L X. Physics of Frozen Soils (in Chinese). Beijing: Publishing House of Science, 2001.
[23]  Gabrile A K, Gikdstein R M, Zebker H A. Mapping small elevation changes over large areas: differential radar interferometry. Journal of Geophysical Research, 1989, 94(7): 9183-9191.
[24]  Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 1993, 364(6433): 138-142.
[25]  李震, 李新武, 刘永智等. 差分干涉SAR冻土形变检测方法研究. 冰川冻土, 2004, 26(4):389-396. Li Z, Li X W, Liu Y Z, et al. Detecting the displacement field of thaw settlement by means of SAR interferometry. Journal of Glaciology and Geocryology (in Chinese), 2004, 26(4):389-396.
[26]  谢酬, 李震, 李新武. 基于PALSAR数据的青藏高原冻土形变检测方法研究. 国土资源遥感, 2008, (3): 15-19. Xie C, Li Z, Li X W. A study of deformation in permafrost regions of Qinghai-Tibet plateau based on ALOS/PALSAR D-InSAR interferometry. Remote Sensing for Land and Resources (in Chinese), 2008, (3): 15-19.
[27]  许文斌, 李志伟, 丁晓丽等. 利用MERIS水汽数据改正ASAR干涉图中的大气影响. 地球物理学报, 2010, 53(5): 1073-1084. Xu W B, Li Z W, Ding X L, et al. Correctiing atmospheric effects in ASAR interferogram with MERIS integrated water vapor data. Chinese J. Geophys. (in Chinese), 2010, 53(5): 1073-1084.
[28]  Zebker H A, Villasenor J. Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 950-959.
[29]  Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
[30]  Casu F, Manzo M, Lanari R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sensing of Environment, 2006, 102(3-4): 195-210.
[31]  Lanari R, Casu F, Manzo M, et al. Application of the SBAS-DInSAR technique to fault creep: A case study of the Hayward fault, California. Remote Sensing of Environment, 2007, 109(1): 20-28.
[32]  吴珍汉, 胡道功, 吴中海等. 西藏羊八井—当雄—谷露地堑的地质特征与形成时代. // 青藏高原地质过程与环境灾害效应文集. 北京: 地震出版社, 2005: 228-234. Wu Z H, Hu D G, Wu Z H, et al. The geological features and generating periods of Yangbajian-Damxung-Gulu graben in Qing-Hai Tibet. // Papers of Qinghai-Tibet Plateau Geological Processes and Effects of Environmental Disasters (in Chinese), 2005: 228-234.
[33]  中国科普博览: http://www.kepu.net.cn/gb/ China Meteorological Data Sharing Service System:http://cdc.cma.gov.cn/home.do;jsessionid=229555BA015190 C347E7A1E78C954DBC.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133