全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

南北地震带岩石圈S波速度结构面波层析成像

DOI: 10.6038/cjg20130408, PP. 1121-1131

Keywords: 南北地震带,岩石圈,速度结构,面波,层析成像

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用天然地震面波记录和层析成像方法,研究了南北地震带及邻近区域的岩石圈S波速度结构和各向异性特征.结果表明南北地震带的东边界不但是地壳厚度剧变带,也是地壳速度的显著分界.其西侧中下地壳的S波速度显著低于东侧,强震大多发生在低速区内部和边界.青藏高原东缘中下地壳速度显著低于正常大陆地壳,在松潘甘孜地块和川滇地块西部大约25~45km深度存在壳内低速层;这些低速特征与高原主体的低速区相连,有利于下地壳物质的侧向流动.地壳的各向异性图像与下地壳流动模式相符,即下地壳物质绕喜马拉雅东构造结运动,东向的运动遇到扬子坚硬地壳阻挡而变为向南和向北东的运动.面波层析成像结果支持青藏高原地壳运动的下地壳流动模型.南北地震带的岩石圈厚度与其东侧的扬子和鄂尔多斯地块相似但速度较低.川滇西部地块上地幔顶部(莫霍面至88km左右)异常低速;松潘甘孜地块上地幔盖层中有低速夹层(约90~130km深度).岩石圈上地幔的速度分布图像与地壳显著不同,在高原主体与川滇之间存在北北东向高速带,可能会阻挡地幔物质的东向运动.上地幔各向异性较弱且与地壳的分布图像显然不同.因此青藏高原岩石圈地幔的构造运动具有与地壳不同的模式,软弱的下地壳提供了壳幔运动解耦的条件.

References

[1]  马杏垣. 中国岩石圈动力学地图集. 北京: 中国地图出版社, 1989. Ma X Y. Lithospheric Dynamics Atlas of China (in Chinese). Beijing: China Cartographic Publishing House, 1989.
[2]  邓起东, 张培震, 冉勇康等. 中国活动构造基本特征. 中国科学D辑: 地球科学, 2002, 32(12): 1020-1030. Deng Q D, Zhang P Z, Ran Y K, et al. Basic characteristics of active tectonics of China. Science in China (Series D), 2003, 46(4): 356-372.
[3]  张培震, 邓起东, 张国民等. 中国大陆的强震活动与活动地块. 中国科学D辑: 地球科学, 2003, 33(增刊): 12-20. Zhang P Z, Deng Q D, Zhang G M, et al. Active tectonic blocks and strong earthquakes in the continent of China. Science in China (Series D), 2003, 46(Suppl.): 13-24.
[4]  Yang Y J, Ritzwoller M H, Zheng Y, et al. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. J. Geophys. Res., 2012, 117, B04303, doi: 10.1029/2011JB008810.
[5]  Yao H, Beghein C, van der Hilst R D. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis— II. Crustal and upper-mantle structure. Geophys. J. Int., 2008, 173: 205-219.
[6]  Yao H J, van der Hilst R D, Montagner J P. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography. J. Geophys. Res., 2010, 115, B12307, doi: 10.1029/2009JB007142.
[7]  Zhou L Q, Xie J Y, Shen W S, et al. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophys. J. Int., 2012, 189(3): 1565-1583.
[8]  Gao X, Su Y L, Wang W M, et al. Lower-crust S-wave velocity beneath western Yunnan Province from waveform inversion of dense seismic observations. Terra Nova, 2009, 21(2): 105-110.
[9]  Wang C Y, Chan W W, Mooney W D. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications. J. Geophys. Res.,2003,108,B92442,doi:10.1029/2002JB001973.
[10]  Huang J L, Zhao D P, Zheng S H. Lithospheric structure and its relationship to seismic and volcanic activity in southwest China. J. Geophys. Res., 2002, 107, B102255, doi: 10.1029/2000JB00013.
[11]  Lei J S, Zhao D P, Su Y J. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res., 2009, 114, B05302, doi: 10.1029/2008JB005881.
[12]  Wang Z, Zhao D P, Wang J. Deep structure and seismogenesis of the north-south seismic zone in southwest China. J. Geophys. Res., 2010, 115, B12334, doi: 10.1029/2010JB007797.
[13]  Wang C Y, Han W B, Wu J P, et a1. Crustal structure beneath the eastern margin of the Tibetan plateau and its tectonic implications. J. Geophys. Res., 2007, 112, B07307,doi:10.1029/2005JB00387.
[14]  Xu L L, Rondenay S, Van der Hilst R D. Structure of the crust beneath the Southeastern Tibetan Plateau from teleseismic receiver functions. Phys. Earth Planet. Int., 2007, 165(3-4): 176-193.
[15]  王椿镛, 楼海, 吕智勇等. 青藏高原东部地壳上地幔S波速度结构——下地壳流的深部环境. 中国科学D辑: 地球科学, 2008, 38(1): 22-32. Wang C Y, Lou H, Lü Z Y, et al. S-wave crustal and upper mantle''s velocity structure in the eastern Tibetan Plateau-deep environment of lower crustal flow. Science in China (Series D), 2008, 51(2): 263-274.
[16]  Smith M L, Dahlen F A. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. J. Geophys. Res., 1973, 78(17): 3321-3333.
[17]  Constable S C, Parker R L, Constable C G. Occam''s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 1987, 52(3): 289-300.
[18]  黄忠贤, 郑月军. 面波速度的Occam反演. //陈颐等主编. 刘光鼎院士工作50周年学术论文集. 北京: 科学出版社, 1998: 692-702. Huang Z X, Zheng Y J. Occam''s inversion for surface wave velocities. //Chen Y eds. Collected Papers for Celebrating 50 Years'' Work of Academician Liu Guang-Ding (in Chinese). Beijing: Science Press, 1998: 692-702.
[19]  Huang Z X, Su W, Peng Y J, et al. Rayleigh wave tomography of China and adjacent regions. J. Geophys. Res., 2003, 108(B2), 2073, doi: 10.1029/2001JB001696.
[20]  Huang Z X, Peng Y J, Luo Y, et al. Azimuthal anisotropy of Rayleigh waves in East Asia. Geophys. Res. Lett., 2004, 31, L15617, doi: 10.1029/2004GL020399.
[21]  Clark M K, Bush J W M, Royden L H. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophys. J. Int., 2005, 162(2): 575-590.
[22]  Shen Z K, Lü J N, Wang M, et al. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res., 2005, 110(B11409), doi: 10.1029/2004JB00342.
[23]  Royden L H, Burchfiel B C, King R W, et al. Surface deformation and lower crustal flow in eastern Tibet. Science, 1997, 276(5313): 788-790.
[24]  袁学诚, 李廷栋. 中国岩石圈三维结构雏型. 中国地质, 2009, 36(1): 29-52. Yuan X C, Li T D. A preliminary 3D model of lithospheric structure in China. Geology in China (in Chinese), 2009, 36(1): 29-52.
[25]  李白基, 李宁, 陈虹. 南北地震带和两侧的瑞利面波群速度差异及其大地构造意义. 地震学报, 1989, 11(3): 268-274. Li B J, Li N, Chen H. Group velocity differences of Rayleigh waves between the NS Seismic Belt, China, and the side regions, and their tectonic implications. Acta Seismologica Sinica (in Chinese), 1989, 11(3): 268-274.
[26]  何正勤, 曾融生, 陈国英. 南北地震带的瑞利波群速度与地壳结构. 西北地震学报, 1990, 12(3): 19-22. He Z Q, Zeng R S, Chen G Y. The group velocity of Rayleigh waves and crust structure in North-South Seismic Zone. Northwestern Seismological Journal (in Chinese), 1990, 12(3): 19-22.
[27]  周兵, 朱介寿, 秦建业. 青藏高原及邻近区域的S波三维速度结构. 地球物理学报, 1991, 34(4): 426-441. Zhou B, Zhu J S, Chun K Y. Three-dimensional shear velocity structure beneath Qinghai-Tibet and its adjacent area. Chinese J. Geophys. (Acta Geophysica Sinica) (in Chinese), 1991, 34(4): 426-441.
[28]  庄真, 傅竹武, 吕梓龄等. 青藏高原及邻近地区地壳与上地幔剪切波三维速度结构. 地球物理学报, 1992, 35(6): 694-709. Zhuang Z, Fu Z W, Lü Z L, et al. 3-D shear velocity model of crust and upper mantle beneath the Tibetan Plateau and its adjacent regions. Chinese J. Geophys. (Acta Geophysica Sinica) (in Chinese), 1992, 35(6): 694-709.
[29]  苏伟, 彭艳菊, 郑月军等. 青藏高原及其邻区地壳上地幔S波速度结构. 地球学报, 2002, 23(3): 193-200. Su W, Peng Y J, Zheng Y J, et al. Crust and upper mantle shear velocity structure beneath the Tibetan Plateau and adjacent areas. Acta Geoscientia Sinica (in Chinese), 2002, 23(3): 193-200.
[30]  Li H Y, Su W, Wang C Y, et al. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet. Earth and Planetary Science Letters, 2009, 282(1-4): 201-211.
[31]  Li H Y, Li S, Song X D, et al. Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography. Geophys. J. Int., 2012, 188(1): 131-143.
[32]  赵国泽, 陈小斌, 王立凤等. 青藏高原东边缘地壳"管流" 层的电磁探测证据.科学通报, 2008, 53(3): 345-350. Zhao G Z, Chen X B, Wang L F, et al. Evidence of crustal "channel flow" in the eastern margin of Tibetan Plateau from MT measurements. Chinese Science Bulletin, 2008, 53(12): 1887-1893.
[33]  Bai D H, Unsworth M J, Meju M A, et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 2010, 3(5): 358-362.
[34]  Dziewonski A, Hales A L. Numerical analysis of dispersed seismic waves. //Methods in Computation Physics. New York: Academic Press, 1972, 11: 39-85.
[35]  张培震. 青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程. 中国科学D辑: 地球科学, 2008, 38(9): 1041-1056. Zhang P Z. Present tectonic deformation, strain partitioning, and deep dynamic process at the east margin of Tibetan Plateau in west Sichuan. Science in China (Series D) (in Chinese), 2008, 38(9): 1041-1056.
[36]  Clark M K, Royden L H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 2000, 28(8): 703-706.
[37]  Yang Y Q, Liu M. Crustal thickening and lateral extrusion during the Indo-Asian collision: A 3D viscous flow model. Tectonophysics, 2009, 465(1-4): 128-135.
[38]  Schoenbohm L M, Burchfiel B C, Chen L Z. Propagation of surface uplift, lower crustal flow, and Cenozoic tectonics of the southeast margin of the Tibetan Plateau. Geology, 2006, 34(10): 813-816.
[39]  Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 2004, 32(9): 809-812.
[40]  Molnar P, Lyon-Caent H. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophys. J. Int., 1989, 99(1): 123-153.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133