刘喜武, 刘洪, 刘彬. 反假频非均匀地震数据重建方法研究. 地球物理学报, 2004, 47(2): 299-305. Liu X W, Liu H, Liu B. A study on algorithm for reconstruction of de-alias uneven seismic data. Chinese J. Geophys. (in Chinese), 2004, 47(2): 299-305.
[2]
孟小红, 刘国峰, 周建军. 大间距地震数据重建方法研究. 地球物理学进展, 2006, 21(3): 687-691. Meng X H, Liu G F, Zhou J J. The study of reconstruction of large gap seismic data. Progress in Geophys. (in Chinese), 2006, 21(3): 687-691.
[3]
高建军, 陈小宏, 李景叶等. 基于非均匀Fourier变换的地震数据重建方法研究. 地球物理学进展, 2009, 24(5): 1741-1747. Gao J J, Chen X H, Li J Y, et al. Study on reconstruction of seismic data based on nonuniform Fourier transform. Progress in Geophys. (in Chinese), 2009, 24(5): 1741-1747.
[4]
李冰, 刘洪, 李幼铭. 三维地震数据离散光滑插值的共轭梯度法. 地球物理学报, 2002, 45(5): 691-699. Li B, Liu H, Li Y M. 3-D seismic data discrete smooth interpolation using conjugate gradient. Chinese J. Geophys. (in Chinese), 2002, 45(5): 691-699.
[5]
Chan R H, Ng N K. Conjugate gradient methods for Toeplitz systems. SIAM Review, 1996, 38(3): 427-482.
[6]
Strang G. Introduction to Applied Mathematics. Cambridge: Wellesley-Cambridge Press, 1986.
[7]
Chan T F. An optimal circulant Preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput., 1988, 9(4): 766-771.
[8]
Chan R H. Circulant preconditioners for Hermitian Toeplitz systems. SIAM J. Matrix Anal. Appl., 1989, 10(4): 542-550.
[9]
Chan R H, Yip A M, Ng M K. The best circulant preconditioners for hermitian Toeplitz systems. SIAM J. Numer. Anal., 2001, 38(3): 876-896.
[10]
Schonewille M A. Fourier reconstruction of irregularly sampled seismic data . Delft: Delft University of Technology, 2000.
[11]
孟小红, 郭良辉, 张致付等. 基于非均匀快速傅里叶变换的最小二乘反演地震数据重建. 地球物理学报, 2008, 51(1): 235-241. Meng X H, Guo L H, Zhang Z F, et al. Reconstruction of seismic data with least squares inversion based on nonuniform fast Fourier transform. Chinese J. Geophys. (in Chinese), 2008, 51(1): 235-241.
[12]
Zwartjes P, Gisolf A. Fourier reconstruction with sparse inversion. Geophysical Prospecting, 2007, 55(2): 199-221.
[13]
Zwartjes P M, Sacchi M D. Fourier reconstruction of nonuniformly sampled, aliased seismic data. Geophysics, 2007, 72(1): V21-V32.
[14]
Duijndam A J W, Schonewille M A, Hindriks C O H. Reconstruction of band-limited signals, irregularly sampled along one spatial direction. Geophysics, 1999, 64(2): 524-538.
[15]
熊登. 叠前地震数据规则化、重建及噪音压制. 北京: 中国科学院研究生院, 2008. Xiong D. Prestack seismic data regularization, reconstruction and noise suppression (in Chinese). Beijing: Graduate University, Chinese Academy of Sciences, 2008.
[16]
梅金顺, 刘洪. ω循环型边界条件. 地球物理学报, 2003, 46(6): 835-841. Mei J S, Liu H. ω-circulant boundary condition. Chinese J. Geophys. (in Chinese), 2003, 46(6): 835-841.
[17]
梅金顺, 刘洪. Toeplitz方程组的近似计算. 地球物理学进展, 2003, 18(1): 128-133. Mei J S, Liu H. Approximate computation of Toeplitz systems of equations. Progress in Geophys. (in Chinese), 2003, 18(1): 128-133.
[18]
梅金顺, 刘洪. 预条件方程组及其应用. 地球物理学报, 2004, 47(4): 718-722. Mei J S, Liu H. Preconditioned equation sets and their applications. Chinese J. Geophys. (in Chinese), 2004, 47(4): 718-722.
[19]
Chan R H, Tso T M, Sun H W. Circulant preconditioners from B-splines. Proceedings to the SPIE Symposium on Advanced Signal Processing: Algorithms, Architectures, and Implementations VII, 1997, 3162: 338-347.
[20]
Chan R H, Yeung M C. Circulant preconditioners constructed from kernels. SIAM J. Numer. Anal., 1992, 29(4): 1093-1103.