全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

预条件共轭梯度法在地震数据重建方法中的应用

DOI: 10.6038/cjg20130426, PP. 1321-1330

Keywords: 预条件,共轭梯度法,地震数据重建,Fourier方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于最小平方的Fourier地震数据重建方法最终转化为求解一个线性方程组,其系数矩阵是Toeplitz矩阵,可以用共轭梯度法求解该线性方程组.共轭梯度法的迭代次数受系数矩阵病态程度的影响,地震数据的非规则采样程度越高,所形成的系数矩阵病态程度越高,就越难收敛和得到合理的计算结果.本文研究了基于Toeplitz矩阵的不同预条件的构造方法,以及对共轭梯度法收敛性的影响.通过预条件的使用,加快了共轭梯度法的迭代速度,改进了共轭梯度算法的收敛性,提高了计算的效率.数值算例和实际地震数据重建试验证明了预条件共轭梯度法对计算效率有很大的提高.

References

[1]  刘喜武, 刘洪, 刘彬. 反假频非均匀地震数据重建方法研究. 地球物理学报, 2004, 47(2): 299-305. Liu X W, Liu H, Liu B. A study on algorithm for reconstruction of de-alias uneven seismic data. Chinese J. Geophys. (in Chinese), 2004, 47(2): 299-305.
[2]  孟小红, 刘国峰, 周建军. 大间距地震数据重建方法研究. 地球物理学进展, 2006, 21(3): 687-691. Meng X H, Liu G F, Zhou J J. The study of reconstruction of large gap seismic data. Progress in Geophys. (in Chinese), 2006, 21(3): 687-691.
[3]  高建军, 陈小宏, 李景叶等. 基于非均匀Fourier变换的地震数据重建方法研究. 地球物理学进展, 2009, 24(5): 1741-1747. Gao J J, Chen X H, Li J Y, et al. Study on reconstruction of seismic data based on nonuniform Fourier transform. Progress in Geophys. (in Chinese), 2009, 24(5): 1741-1747.
[4]  李冰, 刘洪, 李幼铭. 三维地震数据离散光滑插值的共轭梯度法. 地球物理学报, 2002, 45(5): 691-699. Li B, Liu H, Li Y M. 3-D seismic data discrete smooth interpolation using conjugate gradient. Chinese J. Geophys. (in Chinese), 2002, 45(5): 691-699.
[5]  Chan R H, Ng N K. Conjugate gradient methods for Toeplitz systems. SIAM Review, 1996, 38(3): 427-482.
[6]  Strang G. Introduction to Applied Mathematics. Cambridge: Wellesley-Cambridge Press, 1986.
[7]  Chan T F. An optimal circulant Preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput., 1988, 9(4): 766-771.
[8]  Chan R H. Circulant preconditioners for Hermitian Toeplitz systems. SIAM J. Matrix Anal. Appl., 1989, 10(4): 542-550.
[9]  Chan R H, Yip A M, Ng M K. The best circulant preconditioners for hermitian Toeplitz systems. SIAM J. Numer. Anal., 2001, 38(3): 876-896.
[10]  Schonewille M A. Fourier reconstruction of irregularly sampled seismic data . Delft: Delft University of Technology, 2000.
[11]  孟小红, 郭良辉, 张致付等. 基于非均匀快速傅里叶变换的最小二乘反演地震数据重建. 地球物理学报, 2008, 51(1): 235-241. Meng X H, Guo L H, Zhang Z F, et al. Reconstruction of seismic data with least squares inversion based on nonuniform fast Fourier transform. Chinese J. Geophys. (in Chinese), 2008, 51(1): 235-241.
[12]  Zwartjes P, Gisolf A. Fourier reconstruction with sparse inversion. Geophysical Prospecting, 2007, 55(2): 199-221.
[13]  Zwartjes P M, Sacchi M D. Fourier reconstruction of nonuniformly sampled, aliased seismic data. Geophysics, 2007, 72(1): V21-V32.
[14]  Duijndam A J W, Schonewille M A, Hindriks C O H. Reconstruction of band-limited signals, irregularly sampled along one spatial direction. Geophysics, 1999, 64(2): 524-538.
[15]  熊登. 叠前地震数据规则化、重建及噪音压制. 北京: 中国科学院研究生院, 2008. Xiong D. Prestack seismic data regularization, reconstruction and noise suppression (in Chinese). Beijing: Graduate University, Chinese Academy of Sciences, 2008.
[16]  梅金顺, 刘洪. ω循环型边界条件. 地球物理学报, 2003, 46(6): 835-841. Mei J S, Liu H. ω-circulant boundary condition. Chinese J. Geophys. (in Chinese), 2003, 46(6): 835-841.
[17]  梅金顺, 刘洪. Toeplitz方程组的近似计算. 地球物理学进展, 2003, 18(1): 128-133. Mei J S, Liu H. Approximate computation of Toeplitz systems of equations. Progress in Geophys. (in Chinese), 2003, 18(1): 128-133.
[18]  梅金顺, 刘洪. 预条件方程组及其应用. 地球物理学报, 2004, 47(4): 718-722. Mei J S, Liu H. Preconditioned equation sets and their applications. Chinese J. Geophys. (in Chinese), 2004, 47(4): 718-722.
[19]  Chan R H, Tso T M, Sun H W. Circulant preconditioners from B-splines. Proceedings to the SPIE Symposium on Advanced Signal Processing: Algorithms, Architectures, and Implementations VII, 1997, 3162: 338-347.
[20]  Chan R H, Yeung M C. Circulant preconditioners constructed from kernels. SIAM J. Numer. Anal., 1992, 29(4): 1093-1103.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133