全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SAR偏移量跟踪技术估计天山南依内里切克冰川运动

DOI: 10.6038/cjg20130417, PP. 1226-1236

Keywords: 南伊内里切克,冰川,偏移量跟踪技术,流动速度,物质平衡

Full-Text   Cite this paper   Add to My Lib

Abstract:

流动性是冰川的一个主要特征,监测其流速变化可以为冰川物质平衡和冰川灾害研究提供重要信息.本文研究利用2007—2008年的7景ALOS/PALSAR影像和偏移量跟踪技术提取亚洲最大的山岳冰川之一——南伊内里切克冰川的运动场.ALOS/PALSAR影像的时间连续性和南伊内里切克冰川的冰碛覆盖为SAR偏移量跟踪技术获取连续的冰川表面流速提供了基础,然而冰川积累区降雪、附加冰带消融、陡坡区域裂缝发育等客观事件的发生对速度的获取仍有局部影响.尽管如此,本文仍得到了整个冰川不同季节的平面运动场,并且在所有6个时间段内观测到的运动场非常吻合.详细地分析揭示南伊内里切克冰川运动具备以下规律:流速由轴部向两侧递减,由源头向下至雪线处运动速度逐渐增加,然后再向末端逐渐递减;流速大小和坡度大小呈非线性正相关,坡度从1°突变至16°时,冰川运动加速会导致裂缝发育;夏季受冰川湖影响,尾部分支流速能激增至96cm/d;暖季速度会高于寒季5~10cm/d.该冰川的冰舌主体日平均速度为20~50cm/d,局部最高速度可以达到65cm/d.在冰舌上提取了一些样点的速度作统计,结果显示各个时段中所有样点的平均速度最高可达33.3cm/d,最低可至27.9cm/d.冰舌部分的速度和2004年的数据相比下降了约5cm/d.

References

[1]  Strozzi T, Luckman A, Murray T, et al. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. on Geosci. Remote Sens., 2002, 40(11): 2384-2391.
[2]  Lado W K, Kanfmann V. Estimation of rock glacier surface deformation using SAR interferometry data. IEEE Trans. on Geosci. Remote Sens., 2003, 41(6): 1512-1515.
[3]  王淑红, 谢自楚, 李巧媛. 近期东西天山冰川变化的对比研究. 冰川冻土, 2008, 30(6): 946-952. Wang S H, Xie Z C, Li Q Y. Comparison study of glacier variations in East and West Tianshan Mountains. J. Glaci. Geocry. (in Chinese), 2008, 30(6):946-952.
[4]  韩海东, 刘时银, 丁永健等. 科其喀尔巴西冰川的近地层基本气象特征. 冰川冻土, 2008, 30(6): 967-975. Han H D, Liu S Y, Ding Y J, et al. Near-surface meteorological characteristics on the Koxcar Baxi Glacier, Tianshan. J. Glaci. Geocry. (in Chinese), 2008, 30(6): 967-975.
[5]  Wegmuller U, Werner C, Storzzi T, et al. Ionospheric eletron concentration effects on SAR and InSAR. Proceeding of IGASS 2006, Denver, USA, July 31-August 4.
[6]  Werner C, Wegmuller U, Strozzi T, et al. Precision estimation of local offsets between pairs of SAR SLCs and detected SAR images. Geoscience and Remote Sensing Symposium, IGARSS Proceeding, IEEE International, 2005, 7: 4803-4805.
[7]  Rodriguez E, Morris C S, Belz J E. A global assessment of the SRTM performance. Photogramm Eng. Remote Sens., 2006, 72: 249-260.
[8]  Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas: differential radar interferometry. J. Geophys. Res., 1989, 94(B7): 9183-9191.
[9]  Massonnet D, Feigl K L. Radar interferometry and its application to changes in the Earth''s surface. Rev. Geophys., 1998, 36(4):441-500.
[10]  Feng G C, Hetland E A, Ding X L, et al. Coseismic fault slip of the 2008 Mw 7.9 Wenchuan earthquake estimated from InSAR and GPS measurements. Geophys. Res. Lett., 2010, 37, L01302, doi:10.1029/2009GL041213.
[11]  Goldstein R M, Engelhardt H, Kamb B, et al. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science,1993, 262: 1525-1530.
[12]  Liu H X, Zhao Z Y, Jezek K. Synergistic fusion of interferometric and speckle-tacking methods for deriving surface velocity from interferometric SAR data. IEEE Geosci. Remote Sens. Lett., 2007, 4(1): 102-106.
[13]  Liu H X, Zhao Z Y, Jezek K. Simultaneous least square adjustment of multiframe velocities derived from interferometric and speckle-tracking methods. IEEE Geosci. Remote Sens. Lett., 2008, 5(2): 289-293.
[14]  Rignot E J. Fast recession of a West Antarctic Glacier. Science,1998, 281: 549-551.
[15]  Luckman A, Murray T, Strozzi T. Surface flow evolution throughout a glacier surge measured by satellite radar interferometry. Geophys. Res. Lett., 2002, 29(23), 2095, doi:10.1029/2001GL014570.
[16]  Rignot E J, Kanagaratnam P. Changes in the velocity structure of the Greenland Ice Sheet. Science, 2006, 311: 986-990.
[17]  李忠勤, 沈永平, 王飞腾等. 冰川消融对气候变化的响应——以乌鲁木齐河源1号冰川为例. 冰川冻土, 2007, 29(3): 335-342. Li Z Q, Shen Y P, Wang F T, et al. Response of glacier change to climate change—Take Urnumqi Glacier No.1 as an example. J. Glaci. Geocry. (in Chinese), 2007, 29(3): 335-342.
[18]  任炳辉. 中国的冰川. 兰州:甘肃教育出版社, 1990: 54. Ren B H. Chinese Glacier (in Chinese). Lanzhou: Gansu Education Press, 1990: 54.
[19]  Massonnet D, Rossi M, Carmonar C, et al. The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 1993, 364: 138-142.
[20]  Zebker H A, Rosen P A, Goldstein R M, et al. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. J. Geophys. Res., 1994, 99(B10): 19617-19634.
[21]  Hu J, Li Z W, Ding X L, et al. Two-dimensional co-seismic surface displacement field of the Chi-Chi Earthquake inferred from SAR image matching. Sensors, 2008, 8: 6484-6495.
[22]  Li Z W, Ding X L, Huang C, et al. Improved filtering parameter determination for the Goldstein radar interferogram filter. ISPRS J. Photogramm Remote Sens., 2008, 63(6): 621-634.
[23]  Giles A B, Massom R A, Warner R C. A method for sub-pixel scale feature-tracking using Radarsat images applied to the Mertz Glacier Tongue, East Antarctica. Remote Sens. Environ., 2009, 113: 1691-1699.
[24]  Joughin L, Tulaczyk S, Fahnestock M, et al. A mini-surge on the Ryder Glacier, Greenland, observed by satellite radar interferometry. Science, 1996, 274: 228-230.
[25]  Joughin L, Abdalati W, Fahnestock M. Large fluctuations in speed on Greenland''s Jakobshavn Lsbrae glacier. Nature, 2004, 432: 608-610.
[26]  Kwok R, Fahnestock M A. Ice sheet motion and topography from radar interferometry. IEEE Trans. on Geosci. Remote Sens., 1996, 34(1): 189-200.
[27]  Mohr J J, Reeh N, Madsen S N. Three-dimensional glacial flow and surface elevation measured with radar interferometry. Nature, 1998, 391: 273-276.
[28]  Rignot E J, Gogineni S P, Krabill W B, et al. North and Northeast Greenland Ice discharge from satellite radar interferometry. Science, 1997, 276: 934-937.
[29]  Strozzi T, Kouraev A, Wiesmann A, et al. Estimation of Arctic glacier motion with satellite L-band SAR data. Remote Sens. Environ., 2008, 112: 636-645.
[30]  Luckman A, Quincey D, Bevan S. The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sens. Environ., 2007, 111: 172-181.
[31]  Esra E, Andreas R, Olaf H, et al. Glacier velocity monitoring by maximum likelihood texture tracking. IEEE Trans. on Geosci. Remote Sens., 2009, 47(2): 394-405.
[32]  周建民, 李震, 李新武. 基于ALOS/PALSAR雷达干涉数据的中国西部山谷冰川冰流运动规律研究. 测绘学报, 2009, 38(4): 341-347. Zhou J M, Li Z, Li X W. Research on rules of valley glacier motion in Western China based on ALOS/PALSAR interferometry. Acta Geodae. Cartogra. Sinica (in Chinese), 2009, 38(4): 341-347.
[33]  刘时银, 丁永健, 李晶等. 中国西部冰川对近期气候变暖的响应. 第四纪研究, 2006, 26(5): 762-771. Liu S Y, Ding Y J, Li J, et al. Glaciers in response to recent climate warming in Western China. Quaternary Sciences (in Chinese), 2006, 26(5): 762-771.
[34]  Sund M, Elken T, Hagen J O, et al. Svalbard surge dynamics derived from geometric changes. Ann. Glaciol., 2009, 50(52):50-60.
[35]  Mayer C, Lambrecht A, Hagg W, et al. Post-drainage ice dam response at Lake Merzbacher, Inylchek glacier, Kyrgyzstan. Geogra. Ann. Ser., 2008, 90A (1): 87-96.
[36]  叶庆华, 陈锋, 姚檀栋等. 近30年来喜马拉雅山脉西段纳木那尼峰地区冰川变化的遥感监测研究. 遥感学报, 2007, 11(4): 511-520. Ye Q H, Chen F, Yao T D, et al. Tupu of glacier variations in the Mt Naimona Nyi Region, Western Himalayas, in the last three decades. J. Remote Sens. (in Chinese), 2007, 11(4): 511-520.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133