Tassara A, Swain C, Hackney R, et al. Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data. Earth Planet. Sci. Lett., 2007, 253(1-2): 17-36.
[2]
Turcotte D L, Schubert G. Geodynamics. Cambridge: Cambridge University Press, 2002: 456.
[3]
Stark C P, Stewart J, Ebinger C J. Wavelet transform mapping of effective elastic thickness and plate loading: Validation using synthetic data and application to the study of southern African tectonics. J. Geophys. Res., 2003, 108(B12), doi: 10.1029/2001JB000609.
[4]
Burov E B, Diament M. The effective elastic thickness (Te) of continental lithosphere: what does it really mean? J. Geophys. Res., 1995, 100(B3): 3905-3927.
[5]
Stewart J, Watts A B. Gravity anomalies and spatial variations of flexural rigidity at mountain ranges. J. Geophys. Res., 1997, 102(B3): 5327-5352.
[6]
Pérez-Gussinyé M, Lowry A R, Watts A B, et al. On the recovery of effective elastic thickness using spectral methods: examples from synthetic data and from the Fennoscandian shield. J. Geophys. Res., 2004, 109(B10): B10409, doi: 10.1029/2003JB002788.
[7]
Pérez-Gussinyé M, Watts A B. The long-term strength of Europe and its implications for plate-forming processes. Nature, 2005, 436(7049): 381-384.
[8]
Flück K, Hyndmann R D, Loue C. Effective elastic thickness Te of the lithosphere in western Canada. J. Geophys. Res., 2003, 108(B9): 1-13.
[9]
McKenzie D, Fairhead J D. Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free air gravity anomalies. J. Geophys. Res., 1997, 102(B12): 27523-27552.
[10]
Pérez-Gussinyé M, Lowry A R, Watts A B. Effective elastic thickness of South America and its implications for intracontinental deformation. Geochem. Geophys. Geosyst., 2007, 8(5): Q05009, doi: 10.1029/2006GC001511.
[11]
Gómez-Ortiz D, Tejero R, Ruiz J, et al. Estimating the effective elastic thickness of the lithosphere of the Iberian Peninsula based on multitaper spectral analysis. Geophys. J. Int., 2005, 160(2): 729-735.
[12]
Jin Y, McNutt M K, Zhu Y S. Evidence from gravity and topography data for folding of Tibet. Nature, 1994, 371(6499): 669-674.
[13]
Jin Y, McNutt M K, Zhu Y S. Mapping the descent of Indian and Eurasian plates beneath the Tibetan plateau from gravity anomalies. J. Geophys. Res., 1996, 101(B5): 11275-11290.
[14]
Lyon-Caen H, Molnar P. Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. J. Geophys. Res., 1983, 88(B10): 8171-8192.
[15]
Lyon-Caen H, Molnar P. Gravity anomalies and the structure of western Tibet and the southern Tarim basin. Geophys. Res. Lett., 1984, 11(12): 1251-1254.
[16]
Caporali A. Gravity anomalies and the flexure of the lithosphere in the Karakoram, Pakistan. J. Geophys. Res., 1995, 100(B8): 15075-15085.
[17]
Caporali A. Gravimetric constraints on the rheology of the Indian and Tarim plates in the Karakoram continent-continent collision zone. J. Asian Earth Sci., 1998, 16(2-3): 313-321.
[18]
McNutt M K, Diament M, Kogan M G. Variations of elastic plate thickness at continental thrust belts. J. Geophys. Res., 1988, 93(B8): 8825-8838.
[19]
Burov E B, Diament M. Flexure of the continental lithosphere with multilayered rheology. Geophys. J. Int., 1992, 109(2): 449-468.
[20]
Pei S P, Zhao J M, Sun Y S, et al. Upper mantle seismic velocities and anisotropy in China determined through Pn and Sn tomography. J. Geophys. Res., 2007, 112(B5): B05312, doi: 10.1029/2006JB004409.
[21]
Bassin C, Laske G, Masters G. The current limits of resolution for surface wave tomography in North America. EOS Transactions of the American Geophysical Union, 2000, 81: F897.
[22]
Jordan T A, Watts A B. Gravity anomalies, flexure and the elastic thickness structure of the India-Eurasia collisional system. Earth. Planet. Sci. Lett., 2005, 236(3-4): 732-750.
[23]
郭飚, 刘启元, 陈九辉等. 川西龙门山及邻区地壳上地幔远震P波层析成像. 地球物理学报, 2009, 52(2): 346-355. Guo B, Liu Q Y, Chen J H, et al. Teleseismic P-wave tomography of the crust and upper mantle in Longmenshan area, west Sichuan. Chinese J. Geophys. (in Chinese), 2009, 52(2): 346-355.
[24]
易桂喜, 姚华建, 朱介寿等. 用Rayleigh面波方位各向异性研究中国大陆岩石圈形变特征. 地球物理学报, 2010, 53(2): 256-268. Yi G X, Yao H J, Zhu J S, et al. Lithospheric deformation of continental China from Rayleigh wave azimuthal anisotropy. Chinese J. Geophys. (in Chinese), 2010, 53(2): 256-268.
[25]
崔笃信, 王庆良, 胡亚轩等. 青藏高原东北缘岩石圈变形及其机理. 地球物理学报, 2009, 52(6): 1490-1499. Cui D X, Wang Q L, Hu Y X, et al. Lithosphere deformation and deformation mechanism in northeastern margin of Qinghai Tibet plateau. Chinese J. Geophys. (in Chinese), 2009, 52(6): 1490-1499.
[26]
Silver P G. Seismic anisotropy beneath the continents: Probing the depths of Geology. Annu. Rev. Earth Planet. Sci., 1996, 24(1): 385-432.
[27]
常利军, 王椿镛, 丁志峰等. 青藏高原东北缘上地幔各向异性研究. 地球物理学报, 2008, 51(2): 431-438. Chang L J, Wang C Y, Ding Z F, et al. Seismic anisotropy of upper mantle in the northeastern margin of the Tibetan Plateau. Chinese J. Geophys. (in Chinese), 2008, 51(2): 431-438.
[28]
Watts A B. Isostasy and Flexure of the Lithosphere. Cambridge: Cambridge University Press, 2001: 458.
[29]
Forsyth D W. Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J. Geophys. Res., 1985, 90(B14): 12623-12632.
[30]
McNutt M. Flexure reveals great depth. Nature, 1990, 343(6259): 596-597.
[31]
Watts A B, Cochran J R, Selzer G. Gravity anomalies and flexure of the lithosphere: a three-dimensional study of the Great Meteor seamount, Northeast Atlantic. J. Geophys. Res., 1975, 80(11): 1391-1398.
[32]
Cazenave A, Lago B, Dominh K, et al. On the response of the ocean lithosphere to sea-mount loads from Geos 3 satellite radar altimeter observations. Geophys. J. R. Astron. Soc., 1980, 63(1): 233-252.
[33]
Karner G D, Watts A B. Gravity anomalies and flexure of the lithosphere at mountain ranges. J. Geophys. Res., 1983, 88(B12): 10449-10477.
[34]
Poudjom Y H, Nnange J M, Diament M, et al. Effective elastic thickness and crustal thickness variations in west central Africa inferred from gravity data. J. Geophys. Res., 1995, 100(B11): 22047-22070.
[35]
Lowry A R, Smith R B. Strength and rheology of the western U. S. Cordillera. J. Geophys. Res., 1995, 100(B9): 17947-17963.
[36]
Caporali A. Buckling of the lithosphere in western Himalaya: constraints from gravity and topography data. J. Geophys. Res., 2000, 105(B2): 3103-3113.
[37]
Braitenberg C, Wang Y, Fang J, et al. Spatial variations of flexure parameters over the Tibet-Qinghai Plateau. Earth Planet. Sci. Lett., 2003, 205(3-4): 211-214.
[38]
Audet P, Mareschal J C. Wavelet analysis of the coherence between Bouguer gravity and topography: application to the elastic thickness anisotropy in the Canadian Shield. Geophys. J. Int., 2007, 168(1): 287-298.
[39]
Rajesh R S, Stephen J, Mishra D C. Isostatic response and anisotropy of the Eastern Himalayan-Tibetan Plateau: A reappraisal using multitaper spectral analysis. Geophys. Res. Lett., 2003, 30(2): 1060, doi: 10.1029/ 2002GL016104.
[40]
Stephenson R, Lambeck K. Isostatic response of the lithosphere with in-plane stress: Application to Central Australia. J. Geophys. Res., 1985, 90(B10): 8581-8588.
[41]
Simons F J, Zuber M T. Isostatic response of the Australian lithosphere: estimation of effective elastic thickness and anisotropy using multitaper spectral analysis. J. Geophys. Res., 2000, 105(B8): 19163-19184.
[42]
Simons F J, van der Hilst R D, Zuber M T. Spatiospectral localization of isostatic coherence anisotropy in Australia and its relation to seismic anisotropy: implications for lithospheric deformation. J. Geophys. Res., 2003, 108(B5), doi: 10.1029/2001JB000704.
[43]
Audet P, Mareschal J C. Anisotropy of the flexural response of the lithosphere in the Canadian Shield. Geophys. Res. Lett., 2004b, 31(20): L20601, doi: 10.1029/2004GL021080.
[44]
Kirby J F. Which wavelet best reproduces the Fourier power spectrum? Comp. Geosci., 2005, 31(7): 846-864.
[45]
Kirby J F, Swain C J. Mapping the mechanical anisotropy of the lithosphere using a 2D wavelet coherence, and its application to Australia. Phys. Earth Planet. Inter., 2006, 158(2-4): 122-138.
[46]
Swain C J, Kirby J F. An effective elastic thickness map of Australia from wavelet transforms of gravity and topography using Forsyth''s method. Geophys. Res. Lett., 2006, 33(2): L02314, doi: 10.1029/2005GL025090.
[47]
Kirby J F, Swain C J. A reassessment of spectral Te estimation incontinental interiors: the case of North America. J. Geophys. Res., 2009,114(B8), B08401,doi:10.1029/2009JB006356.
[48]
Zhang Z J, Li Y K, Lu D Y, et al. Velocity and anisotropy structure of the crust in the Dabieshan orogenic belt from wide-angle seismic data. Phys. Earth Planet. Inter., 2000, 122(1-2): 115-131.
[49]
Gao S S, Liu K H. Significant seismic anisotropy beneath the southern Lhasa Terrane, Tibetan Plateau. Geochem. Geophys. Geosyst., 2009, 10(2): Q02008, doi: 10.1029/2008GC002227.
[50]
Herquel G, Tapponnier P. Seismic anisotropy in western Tibet. Geophys. Res. Lett., 2005, 32(17): L17306, doi: 10.1029/2005GL023561.
[51]
Shapiro N M, Ritzwoller M H, Molnar P, et al. Thinning and flow of Tibetan crust constrained by seismic anisotropy. Science, 2004, 305(5681): 233-236.
[52]
Lev E, Long M D, van der Hilst R D. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth. Planet. Sci. Lett., 2006, 251(3-4): 293-304.
[53]
郑勇, 李永东, 熊熊. 华北克拉通岩石圈有效弹性厚度及其各向异性. 地球物理学报, 2012, 55(11):3576-3590. Zheng Y, Li Y D, Xiong X. Effective lithospheric thickness and its anisotropy in the North China Craton. Chinese J. Geophys. (in Chinese), 2012, 55(11): 3576-3590.
[54]
Ji S C, Wang Q, Salisbury M H. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson''s ratio. Tectonophysics, 2009, 463(1-4): 15-30.
[55]
Pavlis N, Holmes S, Kenyon S, et al. An Earth Gravitational Model to Degree 2160: EGM2008. EGU General Assembly, Vienna, Austria, 2008.
[56]
嘉世旭, 张先康. 青藏高原东北缘深地震测深震相研究与地壳细结构. 地球物理学报, 2008, 51(5): 1431-1443. Jia S X, Zhang X K. Study on the crust phases of deep seismic sounding experiments and fine crust structures in the northeast margin of Tibetan plateau. Chinese J. Geophys. (in Chinese), 2008, 51(5): 1431-1443.
[57]
Li C, Van der Hilst R D, Toksoz M N. Constraining P-wave velocity variations in the upper mantle beneath Southeast Asia. Phys. Earth Planet. Inter., 2006, 154(2): 180-195.
[58]
高锐, 马永生, 李秋生等. 松潘地块与西秦岭造山带下地壳的性质和关系——深地震反射剖面的揭露. 地质通报, 2006, 25(12): 1361-1367. Gao R, Ma Y S, Li Q S, et al. Structure of the lower crust beneath the Songpan block and West Qinling orogen and their relation as revealed by deep seismic reflection profiling. Geological Bulletin of China (in Chinese), 2006, 25(12): 1361-1367.
[59]
Zhang Z J, Wang Y H, Chen Y, et al. Crustal structure across Longmenshan fault belt from passive source seismic profiling. Geophys. Res. Lett., 2009, 36(17): L17310,doi: 10.1029/2009GL039580.
[60]
Robert A, Pubellier M, de Sigoyer J, et al. Structural and thermal characters of the Longmen Shan (Sichuan, China). Tectonophysics, 2010, 491(1-4): 165-173.
[61]
Royden L H, Burchfiel B C, King B W, et al. Surface deformation and lower crustal flow in eastern Tibet. Science, 1997, 276(5313): 778-790.
[62]
王椿镛, 吴建平, 楼海等. 青藏高原东部壳幔速度结构和地幔变形场的研究. 地学前缘, 2006, 13(5): 349-359. Wang C Y, Wu J P, Lou H, et al. Study of crustal and upper mantle''s structure and mantle deformation field beneath the eastern Tibetan plateau. Earth Science Frontiers (in Chinese), 2006, 13(5): 349-359.
[63]
Xiong X, Park P H, Zheng Y, et al. Present-day slip-rate of Altyn Tagh Fault: numerical result constrained by GPS data. Earth, Planet and Space, 2003, 55: 509-514.
[64]
Zhang P Z, Molnar P, Xu X W. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. Tectonics, 2007, 26(5): TC5010, doi: 10.1029/2006TC002014.
[65]
刘小凤, 肖丽珠, 梅秀萍等. 祁连山地震带地震活动特征及序列类型. 西北地震学报, 2005, 27(1): 56-60. Liu X F, Xiao L Z, Mei X P, et al. Characteristics of seismicity and sequence patterns in Qilianshan seismic belt. Northwestern Seismological Journal (in Chinese), 2005, 27(1): 56-60.
[66]
McNamara D E, Owens T J, Silver P G, et al. Shear wave anisotropy beneath the Tibetan Plateau. J. Geophys. Res., 1994, 99(B7): 13655-13665.
[67]
Karplus M S, Zhao W, Klemperer S L, et al. Injection of Tibetan crust beneath the south Qaidam basin: Evidence from INDEPTH IV wide-angle seismic data. J. Geophys. Res., 2011, 116(B7), doi: 10.1029/2010JB007911.
[68]
Le Pape F, Jones A G, Vozar J, et al. Penetration of crustal melt beyond the Kunlun Fault into northern Tibet. Nature Geoscience, 2012, 5(5): 330-335.
[69]
Zhang Z J, Klemperer S, Bai Z M, et al. Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet, China. Gondwana Res., 2011, 19(4): 994-1007.
[70]
Zhang Z J, Deng Y F, Teng J W, et al. An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings. Journal of Asian Earth Sciences, 2011, 40(4): 977-989.
[71]
McKenzie D, Priestley K. The influence of lithospheric thickness variations on continental evolution. Lithos, 2008, 102(1-2): 1-11.
[72]
黄金莉, 宋晓东, 汪素云. 川滇地区上地幔顶部Pn速度细结构. 中国科学(D辑), 2003, 33(增刊): 144-150. Huang J L, Song X D, Wang S Y. Fine structure of Pn velocity beneath Sichuan-Yunnan region. Sci. China Ser. D-Earth Sci., 2003, 46(Suppl.): 201-209.
[73]
Wang Q, Zhang P Z, Freymueller J T, et al. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 2001, 294(5542): 574-577.
[74]
Burov E, Jaupart C, Mareschal J C. Large-scale crustal heterogeneities and lithospheric strength in cratons. Earth Planet. Sci. Lett., 1998, 164(1-2): 205-219.
[75]
Audet P, Jellinek A M, Uno H. Mechanical controls on the deformation of continents at convergent margins. Earth Planet. Sci. Lett., 2007, 264(1-2): 151-166.
[76]
王椿镛, 常利军, 吕智勇等. 青藏高原东部上地幔各向异性及相关的壳幔耦合型式. 中国科学D辑: 地球科学, 2007, 37(4): 495-503. Wang C Y, Chang L J, Lü Z Y, et al. Seismic anisotropy of upper mantle in eastern Tibetan Plateau and related crust-mantle coupling pattern. Science in China (Series D) (in Chinese), 2007, 37(4):495-503.
[77]
苏伟, 王椿镛, 黄忠贤. 青藏高原及邻区的Rayleigh面波的方位各向异性. 中国科学D辑: 地球科学, 2008, 38(6): 674-682. Su W, Wang C Y, Huang Z X. Azimuthal anisotropy of Rayleigh waves beneath the Tibetan Plateau and adjacent areas. Sci. China Ser. D-Earth Sci., 2008, 51(12): 1717-1725.
[78]
Chen Y, Badal J, Zhang Z J. Radial anisotropy in the crust and upper mantle beneath the Qinghai-Tibet plateau and surrounding regions. J. Asian Earth Sci., 2009, 36(4-5): 289-302.
[79]
Owens T J, Zandt G. Implications of crustal property variations for models of Tibetan plateau evolution. Nature, 1997, 387(6628): 37-43.
[80]
Vergne J, Wittlinger G, Hui Q, et al. Seismic evidence for stepwise thickening of the crust across the NE Tibetan plateau. Earth Planet. Sci. Lett., 2002, 203(1): 25-33.
[81]
Chastel Y B, Dawson P R, Wenk H R, et al. Anisotropic convection with implications for the upper mantle. J. Geophys. Res., 1993, 98(B10): 17757-17771.
[82]
Montagner J P. Upper mantle low anisotropy channels below the Pacific plate. Earth Planet. Sci. Lett., 2002, 202(2): 263-274.
[83]
Wessel P, Smith W H F. New, improved version of generic mapping tools released. Eos Trans. AGU, 1998, 79(47): 579.