全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种地方与区域地震震源机制反演技术:广义极性振幅技术(二)——对实际震例的应用

DOI: 10.6038/cjg20151014, PP. 3601-3614

Keywords: 地方与区域地震,震源机制反演,广义极性振幅技术,实际震例

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了检验广义极性振幅技术(GPAT)的实用性,我们利用GPAT反演确定了49次实际地震的震源机制、矩震级和震源深度.为了检验GPAT对地方地震、区域地震以及远震的实用性,我们选用了震级范围约为ML0.2~MS7.0之间的地震与震中距范围约在5~8000km之间的观测资料.对反演结果的分析表明,利用GPAT获取的震源机制结果在合理误差范围内是正确的,利用GPAT获取的矩震级结果是可靠的,而利用GPAT获取的震源深度总体上似乎比常规定位深度深约0.6km.总体而言,GPAT在震源机制、矩震级和震源深度的反演方面表现出良好的实用性.

References

[1]  Reasenberg P A, Oppenheimer D H. 1985. FPFIT, FPPLOT and FPPAGE: Fortran computer programs for calculating and displaying earthquake fault plane solutions. U. S. Geological Survey Open-File Report 85-739, 109.
[2]  Snoke J A, Munsey J W, Teague A G, et al. 1984. A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data. Journal of Earthquake Notes, 55(3): 15.
[3]  Tan Y, Helmberger D V. 2007. A new method for determining small earthquake source parameters using short-period P waves. Bull. Seism. Soc. Am., 97(4): 1176-1195.
[4]  Vidal A, Mungúia L. 1991. Local magnitude and source parameters for earthquakes in the Peninsular Ranges of Baja California, Mexico. Bull. Seism. Soc. Am., 81(6): 2254-2267.
[5]  Wang C Y, Mooney W D, Wang X L, et al. 2002. Study on 3-D velocity structure of crust and upper mantle in Sichuan-Yunnan region, China. Acta Seismologica Sinica (in Chinese), 24(1): 1-16.
[6]  Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green''s functions. Bull. Seism. Soc. Am., 89(3): 733-741.
[7]  Xu L S, Du H L, Yan C, et al. 2013a. A method for determination of earthquake hypocentroid: Time-reversal imaging technique I-Principle and numerical tests. Chinese J. Geophys. (in Chinese), 56(4): 1190-1206, doi: 10.6038/cjg20130414.
[8]  Xu L S, Yan C, Zhang X, et al. 2013b. A method for determination of earthquake hypocentroid: Time-reversal imaging technique—An examination based on people-made earthquake. Chinese J. Geophys. (in Chinese), 56(12): 4009-4027, doi: 10.6038/cjg20131207.
[9]  Xu L S, Yan C, Zhang X, et al. 2014. Rupture histories of the 2014 Yingjiang double earthquakes. Chinese J. Geophys. (in Chinese), 57(10): 3270-3284, doi: 10.6038/cjg20141015.
[10]  Xu Z H, Yan M, Zhao Z H. 1983. Evaluation of the direction of tectonic stress in north China from recorded data of a large number of small earthquakes. Acta Seismologica Sinica (in Chinese), 5(3): 268-279.
[11]  Yan C, Xu L S. 2014. An inversion technique for the mechanisms of local and regional earthquakes: generalized polarity and amplitude technique (I)—Principle and numerical tests. Chinese J. Geophys. (in Chinese), 57(8): 2555-2572, doi: 10.6038/cjg20140816.
[12]  Yu C Q, Tao K, Cui X F, et al. 2009. P-wave first-motion focal mechanism solutions and their quality evaluation. Chinese J. Geophys. (in Chinese), 52(5): 1402-1411, doi: 10.3969/j.issn.0001-5733.2009.05.030.
[13]  Zhao B, Gao Y, Huang Z B, et al. 2013. Double difference relocation, focal mechanism and stress inversion of Lushan MS7.0 earthquake sequence. Chinese J. Geophys. (in Chinese), 56(10): 3385-3395, doi: 10.6038/cjg20131014.
[14]  Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms. Bull. Seism. Soc. Am., 84(1): 91-104.
[15]  Zheng X F, Ouyang B, Zhang D N, et al. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake. Chinese J. Geophys. (in Chinese), 52(5): 1412-1417, doi: 10.3969/j.issn.0001-5733.2009.05.031.
[16]  Zheng X F, Yao Z X, Liang J H, et al. 2010. The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan earthquake disaster relief and researches. Bull. Seism. Soc. Am., 100(5B): 2866-2872.
[17]  Zhu L P, Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms.Bull.Seism.Soc.Am., 86(5): 1634-1641.
[18]  Aki K, Richards P G. 1980. Quantitative Seismology Theory and Methods, Vol. I. W. H. San Francisco, California: Freeman and Company.Bakun W H, Lindh A G. 1977. Local magnitudes, seismic moments, and coda durations for earthquakes near Oroville, California. Bull. Seism. Soc. Am., 67(3): 615-629.
[19]  Bakun W H. 1984. Seismic moments, local magnitudes, and coda-duration magnitudes for earthquakes in central California. Bull. Seism. Soc. Am., 74(2): 439-458.
[20]  Ben-Zion Y, Rice J R. 1993. Earthquake failure sequences along a cellular fault zone in a three-dimensional elastic solid containing asperity and nonasperity regions. J. Geophys. Res., 98(B8): 14109-14131.
[21]  Ben-Zion Y, Zhu L P. 2002. Potency-magnitude scaling relations for southern California earthquakes with 1. 0
[22]  Chen Y T, Liu R F. 2004. Earthquake magnitude. Seismological and Geomagnetic Observation and Research (in Chinese), 25(6): 1-12.
[23]  Clinton J F, Hauksson E, Solanki K. 2006. An evaluation of the SCSN moment tensor solutions: Robustness of the Mw magnitude scale, style of faulting, and automation of the method. Bull. Seism. Soc. Am., 96(5): 1689-1705.
[24]  Dreger D, Helmberger D. 1991. Source parameters of the Sierra Madre earthquake from regional and local body waves. Geophys. Res. Lett., 18(11): 2015-2018.
[25]  Dreger D S, Helmberger D V. 1993. Determination of source parameters at regional distances with three-component sparse network data. J. Geophys. Res., 98(B5): 8107-8125.
[26]  Dziewonski A M, Chou T A, Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res., 86(B4): 2825-2852.
[27]  Ebel J E, Bonjer K P. 1990. Moment tensor inversion of small earthquakes in southwestern Germany for the fault plane solution. Geophys. J. Int., 101(1): 133-146.
[28]  Fletcher J, Boatwright J, Haar L, et al. 1984. Source parameters for aftershocks of the Oroville, California, earthquake. Bull. Seism. Soc. Am., 74(4): 1101-1123.
[29]  Hanks T C, Kanamori H. 1979. A moment magnitude scale. J. Geophys. Res., 84(B5): 2348-2350.
[30]  Hanks T C, Boore D M. 1984. Moment-magnitude relations in theory and practice. J. Geophys. Res., 89(B7): 6229-6235.
[31]  Hardebeck J L, Shearer P M. 2002. A new method for determining first-motion focal mechanisms. Bull. Seism. Soc. Am., 92(6): 2264-2276.
[32]  Hardebeck J L, Shearer P M. 2003. Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bull. Seism. Soc. Am., 93(6): 2434-2444.
[33]  Helmberger D V, Engen G R. 1980. Modeling the long-period body waves from shallow earthquakes at regional ranges. Bull. Seism. Soc. Am., 70(5): 1699-1714.
[34]  Julian B R, Foulger G R. 1996. Earthquake mechanisms from linear-programming inversion of seismic-wave amplitude ratios. Bull. Seism. Soc. Am., 86(4): 972-980.
[35]  Kanamori H. 1977. The energy release in great earthquakes. J. Geophys. Res., 82(20): 2981-2987.
[36]  Kennett B L N. 1983. Seismic Wave Propagation in Stratified Media. Cambridge: Cambridge University Press.
[37]  Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105(2): 429-465.
[38]  Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the earth from traveltimes. Geophys. J. Int., 122(1): 108-124.
[39]  Kim W Y, Wahlstr?m R, Uski M. 1989. Regional spectral scaling relations of source parameters for earthquakes in the Baltic Shield. Tectonophysics, 166(1-3): 151-161.
[40]  Kisslinger C. 1980. Evaluation of S to P amplitude rations for determining focal mechanisms from regional network observations. Bull. Seism. Soc. Am., 70(4): 999-1014.
[41]  Lay T, Wallace T C. 1995. Modern Global Seismology. New York: Academic Press.
[42]  Liang S H, Li Y M, Shu P Y, et al. 1984. On the determining of source parameters of small earthquakes by using amplitude ratios of P and S from regional network observations. Chinese J. Geophys. (Acta Geophysica Sinica) (in Chinese), 27(3): 249-257.
[43]  Lü J, Wang X S, Su J R, et al. 2013. Hypocentral location and source mechanism of the MS7.0 Lushan earthquake sequence. Chinese J. Geophys. (in Chinese), 56(5): 1753-1763, doi: 10.6038/cjg20130533.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133