全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国东北地区北部上地幔各向异性及其动力学意义

DOI: 10.6038/cjg20151010, PP. 3540-3552

Keywords: 中国东北,剪切波分裂,地震各向异性,SKS震相

Full-Text   Cite this paper   Add to My Lib

Abstract:

中国东北地区广泛发育新生代板内火山,晚中生代以来岩石圈遭受过多期拉张作用.作为中国唯一的深震孕育区,中国东北地区受到太平洋板块的西向俯冲,使得其成为研究岩石圈变形、板块俯冲和板内火山成因及其相互作用关系的天然实验室.通过分析架设在中国东北地区北部的147个流动和固定台站的SKS波形数据,共计得到了377对各向异性参数和251个无效分裂结果.结果表明,中国东北地区东西两侧具有不同的各向异性分布:西部地区各向异性方向变化范围为N143-199°E,平均N169°E,与晚中生代岩石圈伸展方向一致;其各向异性延迟时间平均值约为0.8s,说明来自地幔的各向异性比较微弱,主要由残留在岩石圈中的古老变形所引起.同时,在松辽盆地和佳木斯地块部分区域,观测到延迟时间较小的各向异性(~0.4s),可能是由于岩石圈的拆沉和热地幔物质的上涌侵蚀了保留在岩石圈的古老形变所致.在研究区东部,NNW-SSE朝向的各向异性被观测到,并伴随较大的延迟时间(大于1.0s),可能与太平洋板块撕裂回撤而产生的地幔流动有关.此外,近W-E方向的各向异性只在佳木斯地块被观测到,而太平洋板块在地幔过渡带中的俯冲可能是其产生的主要成因.

References

[1]  Wang F, Zhou X H, Zhang L C, et al. 2006. Late Mesozoic volcanism in the Great Xing''an Range (NE China): Timing and implications for the dynamic setting of NE Asia. Earth & Planetary Science Letters, 251(1-2): 179-198.
[2]  Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released. Eos Transactions, 79(47): 579-579.
[3]  Wu F Y, Sun D Y, Li H M, et al. 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173.
[4]  Wu F Y, Lin J Q, Wilde S A, et al. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119.
[5]  Wu J, Gao Y, Chen Y T, et al. 2007. Seismic anisotropy in the crust in northwestern capital area of China. Chinese Journal of Geophysics (in Chinese), 50(1): 209-220, doi: 10.3321/j.issn:0001-5733.2007.01.027.
[6]  Wüstefeld A, Bokelmann G, Zaroli C, et al. 2008. SplitLab: A shear-wave splitting environment in Matlab. Computers & Geosciences, 34(5): 515-528.
[7]  Zhang F X, Wu Q J, Li Y H. 2013. The traveltime tomography study by teleseismic P wave data in the Northeast China area. Chinese Journal of Geophysics (in Chinese), 56(8): 2690-2700, doi: 10.6038/cjg20130818.
[8]  Zhang F X, Wu Q J, Li Y H. 2014. A traveltime tomography study by teleseismic S wave data in the Northeast China area. Chinese Journal of Geophysics (in Chinese), 57(1): 88-101, doi: 10.6038/cjg20140109.
[9]  Zhang G C, Wu Q J, Li Y H, et al. 2013. An investigation on crustal anisotropy of Northeast China using Moho Ps converted phase. Acta Seismologica Sinica (in Chinese), 35(4): 485-497.
[10]  Zhang J H, Gao S, Ge W C, et al. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing''an Range, northeastern China: implications for subduction-induced delamination. Chemical Geology, 276(3-4): 144-165.
[11]  Zhang R Q, Wu Q J, Sun L, et al. 2014. Crustal and lithospheric structure of Northeast China from S-wave receiver functions. Earth and Planetary Science Letters, 401: 196-205.
[12]  Zhang X Z, Yang B J, Wu F Y, et al. 2006. The lithosphere structure in the Hingmong-Jihei (Hinggan-Mongolia-Jilin-Heilongjiang) region, northeastern China. Geology in China (in Chinese), 33(4): 816-823, doi: 10.3969/j.issn.1000-3657.2006.04.011.
[13]  Zhao D P, Tian Y, Lei J S, et al. 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab. Physics of the Earth and Planetary Interiors, 173(3-4): 197-206.
[14]  Zheng S H, Gao Y. 1994. Azimuthal anisotropy in lithosphere on the Chinese mainland from observations of SKS at CDSN. Acta Seismologica Sinica, 7(2): 177-186.
[15]  Zheng X F, Ouyang B, Zhang D N, et al. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 52(5): 1412-1417, doi: 10.3969/j.issn.0001-5733.2009.05.031.
[16]  Allen M B, Macdonald D I M, Xun Z, et al. 1997. Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China. Marine and Petroleum Geology, 14(7-8): 951-972.
[17]  Bowman J R, Ando M. 2007. Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophysical Journal International,88(1):25-41.
[18]  Christensen N I. 1984. The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites. Geophysical Journal International, 76(1): 89-111.
[19]  Devaux J P, Schubert G, Anderson C. 1997. Formation of a metastable olivine wedge in a descending slab. Journal of Geophysical Research: Solid Earth (1978—2012), 102(B11): 24627-24637.
[20]  Fischer K M, Parmentier E M, Stine A R, et al. 2000. Modeling anisotropy and plate-driven flow in the Tonga subduction zone back arc. Journal of Geophysical Research Solid Earth, 105(B7): 16181-16191.
[21]  Gripp A E, Gordon R G. 2002. Young tracks of hotspots and current plate velocities. Geophysical Journal International, 150(2): 321-361.
[22]  Huang Z C, Wang L S, Zhao D P, et al. 2011. Seismic anisotropy and mantle dynamics beneath China. Earth and Planetary Science Letters, 306(1-2): 105-117.
[23]  Jung H, Karato S. 2001. Water-induced fabric transitions in olivine. Science, 293(5534): 1460-1463.
[24]  Jung H, Mo W, Green H W. 2009. Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine. Nature Geoscience, 2(1): 73-77.
[25]  Karato S. 2003. Mapping water content in the upper mantle.//Geophysical Monograph Series. Washington, DC: American Geophysical Union, 138: 135-152.
[26]  Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2): 429-465.
[27]  Kincaid C, Griffiths R W. 2003. Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature, 425(6953): 58-62.
[28]  Kneller E A, van Keken P E. 2007. Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems. Nature, 450(7173): 1222-1225.
[29]  Li J, Niu F L. 2010. Seismic anisotropy and mantle flow beneath northeast China inferred from regional seismic networks. Journal of Geophysical Research: Solid Earth (1978—2012), 115(B12).
[30]  Li L, Weidner D J, Brodholt J, et al. 2006. Elasticity of Mg2SiO4 ringwoodite at mantle conditions. Physics of the Earth and Planetary Interiors, 157(3): 181-187.
[31]  Liu K H, Gao S S, Gao Y, et al. 2008. Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath northeast Asia. Journal of Geophysical Research: Solid Earth (1978—2012), 113(B1).
[32]  Liu Z, Niu F L, Chen Y J, et al. 2015. Receiver function images of the mantle transition zone beneath NE China: New constraints on intraplate volcanism, deep subduction and their potential link. Earth and Planetary Science Letters, 412: 101-111.
[33]  Long M D, van der Hilst R D. 2005. Upper mantle anisotropy beneath Japan from shear wave splitting. Physics of the Earth and Planetary Interiors, 151(3-4): 206-222.
[34]  Long M D, Silver P G. 2008. The subduction zone flow field from seismic anisotropy: A global view. Science, 319(5861): 315-318.
[35]  Long M D, Silver P G. 2009. Shear wave splitting and mantle anisotropy: measurements, interpretations, and new directions. Surveys in Geophysics, 30(4-5): 407-461.
[36]  Miller M S, Kennett B L N, Toy V G. 2006. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin. Journal of Geophysical Research: Solid Earth (1978—2012), 111(B2).
[37]  Nicolas A, Christensen N I. 1987. Formation of anisotropy in upper mantle peridotites—a review.//Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System. Washington DC: AGU, 111-123.
[38]  Peyton V, Levin V, Park J, et al. 2001. Mantle flow at a slab edge: Seismic anisotropy in the Kamchatka region. Geophys. Res. Lett., 28(2): 379-382.
[39]  Ren J Y, Tamaki K, Li S T, et al. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344(3-4): 175-205.
[40]  Sandvol E, Ni J. 1997. Deep azimuthal seismic anisotropy in the southern Kurile and Japan subduction zones. Journal of Geophysical Research: Solid Earth (1978—2012), 102(B5): 9911-9922.
[41]  Savage M K. 1999. Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting?. Reviews of Geophysics, 37(1): 65-106.
[42]  Schubert G, Turcotte D L, Olson P. 2001. Mantle Convection in the Earth and Planets 2 Volume Set. Cambridge: Cambridge University Press.
[43]  ?eng?r A M C, Natal''In B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307.
[44]  Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res., 96(B10): 16429-16454.
[45]  Silver P G. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annu. Rev. Earth Planet. Sci., 24(1): 385-432.
[46]  Silver P G, Gao S S, Liu K H. 2001. Mantle deformation beneath southern Africa. Geophys. Res. Lett., 28(13): 2493-2496.
[47]  Tommasi A, Mainprice D, Cordier P, et al. 2004. Strain-induced seismic anisotropy of wadsleyite polycrystals and flow patterns in the mantle transition zone. Journal of Geophysical Research: Solid Earth (1978—2012), 109(B12): B12405.
[48]  Vinnik L P, Makeyeva L I, Milev A, et al. 1992. Global patterns of azimuthal anisotropy and deformations in the continental mantle. Geophysical Journal International, 111(3): 433-447.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133