Baur O, Kuhn M, Featherstone W E. 2009. GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. J. Geophys. Res., 114(B6): B06407.
[2]
Bettadpur S. 2012. UTCSR Level-2 Processing Standards Document for Product Release 05, GRACE 327-742, Center for Space Research, The University of Texas at Austin.
[3]
Cazenave A, Chen J L. 2010. Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth and Planetary Science Letters, 298(3-4): 263-274.
[4]
Chen J L, Wilson C R, Blankenship D D, et al. 2006. Antarctic mass rates from GRACE. Geophys. Res. Lett., 33(11): L11502.
[5]
Chen J L, Wilson C R, Tapley B D, et al. 2009. 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J. Geophys. Res., 114, B05404, doi:10.1029/2008JB006056.
[6]
Cheng M K, Tapley B D. 2004. Variations in the Earth''s oblateness during the past 28 years. J. Geophys. Res., 109(B9): B09402.
[7]
Ding Z F, He Z Q, Wu J P, et al. 2001. Research on the 3-D seismic velocity structures in Qinghai-Xizang Plateau. Earthquake Research in China (in Chinese), 17(2): 202-209.
[8]
Fan Y, van den Dool H. 2004. Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res.,109, D10102, doi:10.1029/2003JD004345.
[9]
Feng W, Zhong M, Lemoine J M, et al. 2013. Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements. Water Resour. Res., 49(4): 2110-2118.
[10]
Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res.: Solid Earth (1978—2012), 112, B08416, doi:10.1029/2005JB004120.
[11]
Han S C, Shum C K, Jekeli C, et al. 2005. Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys. J. Int., 163(1): 18-25.
[12]
Hetényi G, Cattin R, Brunet F, et al. 2007. Density distribution of the India plate beneath the Tibetan plateau: geophysical and petrological constraints on the kinetics of lower-crustal eclogitization. Earth and Planetary Science Letters, 264(1-2): 226-244.
[13]
Hu X G, Chen J L, Zhou Y H, et al. 2006. Seasonal water storage change of the Yangtze River basin detected by GRACE. Science in China Series D, 49(5): 483-491.
[14]
Jacob T, Wahr J, Pfeffer W T, et al. 2012. Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386): 514-518.
[15]
Landerer F W, Swenson S C. 2012. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48(4): W04531.
[16]
Lei Y B, Yang K, Wang B, et al. 2014. Response of inland lake dynamics over the Tibetan Plateau to climate change. Climatic Change, 125(2): 281-290.
[17]
Liang S M, Gan W J, Shen C Z, et al. 2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J. Geophys. Res., 118(10): 5722-5732.
[18]
Liu S, Chi X G, Li C, et al. 2001. The summarizing for the forming and uplifted mechanism of Qinghai-Tibet Plateau. World Geology (in Chinese), 20(2): 105-112.
[19]
Lombard A, Garcia D, Ramillien G, et al. 2007. Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth and Planetary Science Letters, 254(1-2): 194-202.
[20]
Luo D L, Jin H J, Lin L, et al. 2012. Degradation of permafrost and cold-environments on the interior and eastern Qinghai Plateau. Journal of Glaciology and Geocryology (in Chinese), 34(3): 538-546.
[21]
Ma R H, Yang G S, Duan H T, et al. 2011. China''s lakes at present: Number, area and spatial distribution. Sci. China: Earth Sci., 54(2): 283-289.
[22]
Matsuo K, Heki K. 2010. Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth and Planetary Science Letters, 290(1-2): 30-36.
[23]
Paulson A, Zhong S J, Wahr J. 2007. Inference of mantle viscosity from GRACE and relative sea level data. Geophys. J. Int., 171(2): 497-508.
[24]
Ray R D, Rowlands D D, Egbert G D. 2003. Tidal models in a new era of satellite gravimetry. Space Science Reviews, 108(1-2): 271-282.
[25]
Woodworth P L, Gregory J M. 2003. V: sea level: Benefits of GRACE and GOCE to sea level studies. Space Science Reviews, 108(1): 307-317.
[26]
Wu Q J, Zeng R S. 1998. The crustal structure of Qinghai-Xizang Plateau inferred from broadband teleseismic waveform. Chinese J. Geophys. (Acta Geophysica Sinica) (in Chinese), 41(5): 669-679.
[27]
Xing L L, Sun W K, Li H, et al. 2011. Present-day crust thickness increasing beneath the Qinghai-Tibetan Plateau by using geodetic data at Lhasa station. Acta Geodaetica et Cartographica Sinica (in Chinese), 40(1): 41-44.
[28]
Ye Q H, Chen F, Stein A, et al. 2009. Use of a multi-temporal grid method to analyze changes in glacier coverage in the Tibetan Plateau. Progress in Natural Science, 19(7): 861-872.
[29]
Yi S, Sun W K. 2014. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. J. Geophys. Res., 119(3): 2504-2517.
[30]
Zhang G Q, Yao T D, Xie H J, et al. 2013. Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophys. Res. Lett., 40(10): 2125-2130.
[31]
Zhang Y, Cheng S Y, Zhao B K, et al. 2013. The feature of tectonics in the Tibet Plateau from new regional gravity signals. Chinese J. Geophys. (in Chinese), 56(4): 1369-1380, doi: 10.6038/cjg20130431.
[32]
Zhang Z Z, Chao B F, Lu Y, et al. 2009. An effective filtering for GRACE time-variable gravity: Fan filter. Geophys. Res. Lett.,36, L17311, doi:10.1029/2009GL039459.
[33]
Rodell M, Houser P R, Jambor U, et al. 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3): 381-394.
[34]
Royden L H, Burchfiel B C, van der Hilst R D, et al. 2008. The geological evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058.
[35]
Steffen H, Petrovic S, Müller J, et al. 2009. Significance of secular trends of mass variations determined from GRACE solutions. Journal of Geodynamics, 48(3-5): 157-165.
[36]
Su W, Peng Y J, Zheng Y J, et al. 2002. Crust and upper mantle shear velocity structure beneath the Tibetan Plateau and adjacent areas. Acta Geoscientia Sinica (in Chinese), 23(3): 193-200.
[37]
Sun W K, Wang Q, Li H, et al. 2009. Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau: Geodetic evidence of increasing crustal thickness. Geophys. Res. Lett., 36(2): L02303.
[38]
Sun W K, Hasegawa T, Zhang X L, et al. 2011. Effects of Gaussian filter in processing GRACE data: Gravity rate of change at Lhasa, southern Tibet. Sci. China: Earth Sci., 54(9): 1378-1385.
[39]
Swenson S, Chambers D, Wahr J. 2008. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res., 113(B8): B08410.
[40]
Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671-1677.
[41]
Tiwari V M, Wahr J, Swenson S. 2009. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett., 36(18): L18401.
[42]
Velicogna I, Wahr J. 2005. Greenland mass balance from GRACE. Geophys. Res. Lett., 32(18): L18505.
[43]
Wahr J, Molenaar M, Bryan F. 1998. Time variability of the Earth''s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103(B12): 30205-30225.
[44]
Wahr J, Swenson S, Velicogna I. 2006. Accuracy of GRACE mass estimates. Geophys. Res. Lett., 33(6):L06401, doi:10.1029/2005GL025305.
[45]
Wang H S, Wu P, Xu H Z. 2009. A review of research in glacial isostatic adjustment. Progress in Geophys. (in Chinese), 24(6): 1958-1967, doi: 10.3969/j.issn.1004-2903.2009.06.005.
[46]
Wang L S, Chen C, Zou R, et al. 2014. Using GPS and GRACE to detect seasonal horizontal deformation caused by loading of terrestrial water: A case study in the Himalayas. Chinese J. Geophys. (in Chinese), 57(6): 1792-1804, doi: 10.6038/cjg20140611.
[47]
Wang Q S, An Y L, Zhang C J,et al. 2003. Gravitology (in Chinese). Beijing: Seismological Press, 163-165.